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Introduction

Nonhuman mammalian mothering is hormone-dependent; hormonal changes occurring during 
pregnancy and labor causally determine the expression of maternal behavior. Studies in animal mod-
els have shown that experimental manipulations on the expression of key hormones markedly alter 
or totally eliminate the expression of maternal care (Feldman, 2012b, 2016; Lonstein, Lévy, and 
Fleming, 2015; Pryce, 1996; Rosenblatt, 1994; Rosenblatt, 2003). Research in rodents describes the 
critical role of oxytocin (OT) and prolactin (PRL), which undergo substantial changes during late 
pregnancy (PRL) and surge at birth (OT), for the onset of maternal behavior. In parallel, hormones 
associated with the stress response, particularly corticosterone (cortisol in humans), modulate mater-
nal vigilance and active protection of offspring (Brummelte and Galea, 2010; Mann and Bridges, 
2001; Pedersen and Prange, 1985). Finally, animal studies point to the involvement of vasopres-
sin (AVP) and testosterone (T) in the emergence of fatherhood and the expression of mammalian 
paternal care (Carter, 2014; Wynne-Edwards, 2001). In combination with sex-related hormones 
(estradiol, progesterone), these hormones establish the neuroendocrine milieu that enables rodent 
mothers—and fathers in the 3%–5% of mammalian species who are biparental (Braun and Cham-
pagne, 2014; Kleiman, 1977)—to parent. The hormones of parenting enable parents to recognize 
infants as rewarding stimuli, protect infants from harm, nurse, express species-typical parental behav-
ior, and provide external regulation for the infant’s immature regulatory systems, including sleep 
organization, thermoregulation, autonomic functions, attention, and exploration (Feldman, 2016; 
Hofer, 1995a,b; Numan and Stolzenberg, 2009). These hormones also help parents usher their young 
into the social niche and accommodate its distinct features. Finally, the neuroendocrinology of par-
enting promotes the infant’s ability to manage life in harsh ecologies via mechanisms of endocrine fit 
and the effects of parental hormones on the infant’s brain maturation and social fittedness (Feldman, 
Monakhov, Pratt, and Ebstein, 2016).

Human parenting is not hormone-dependent; however, hormonal changes during pregnancy, 
birth, and the postpartum period prime and accompany the expression of parenting, sculpting the 
development of the parent-child attachment and its long-term effects on the infant’s brain and behav-
ior (Apter-Levi et al., 2016; Galbally, Lewis, IJzendoorn, and Permezel, 2011; Feldman, 2016, 2017; 
Gordon, Zagoory-Sharon, Leckman, and Feldman, 2010b, 2010c). Humans’ large associative cortex, 
neural plasticity, and massive limbic-cortical projections enable bottom-up, behavior-based process-
ing so that committed parental care can trigger the hormones of parenting even without pregnancy 
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and childbirth; for instance in primary-caregiving fathers or adoptive parents (Abraham et al., 2014; 
Bick, Dozier, Bernard, Grasso, and Simons, 2013). Yet, as parenting is the only social phenomenon 
observed across species and taxa, there is no other sociobiological process that can provide a clearer 
lens into evolution as it occurs and shed light on the roots of humans’ collaborative, empathic, and 
relational abilities (Feldman, 2015a, 2015b; Rilling and Young, 2014). Furthermore, the parent-infant 
interface marks the arena where Darwin (1859) has initially proposed structural and functional brain 
adaptations take place. The neuroendocrinology of human parental care, addressing the hormonal 
changes that accompany parenting and their neural, behavioral, and mental correlates, may thus 
afford a unique perspective on the evolution of human sociality, highlighting both its conserved and 
human-specific features (Feldman, 2015b, 2016).

In addition to a special viewpoint on human sociality, the neuroendocrinology of parenting 
provides a unique angle on neural plasticity not available from other topics in neuroscience. Preg-
nancy and the postpartum mark the period of greatest plasticity in the adult brain (Leuner, Glasper, 
and Gould, 2010), and such plasticity is observed not only in the maternal but also in the paternal 
brain, with fathers’ investment in childrearing increasing plasticity not only in the father’s brain but 
also in the brain of his offspring (Braun and Champagne, 2014). Parenting, therefore, enables the 
investigation of endocrine systems and neural networks as they reorganize in the parent’s brain and 
research on how successful versus less optimal reorganization directly impacts the infant’s emerging 
endocrine systems and neurobiological outcomes. Furthermore, parenting is perhaps the most highly 
conserved social phenomenon, accompanied by similar species-typical behaviors that are triggered 
by the same neuroendocrine events across mammalian evolution (Feldman, 2015a, 2015b; Rilling 
and Young, 2014). This is particularly the case with regards to the ancient oxytocin system, which 
supports parenting, group cohesion, and stress management in species ranging from nematodes to 
humans, including birds, fish, and Caenorhabditis elegans (Feldman et al., 2016; Goodson, 2013). In 
comparison with the neuroscience of parenting, assessing the brain basis of emotions, memory, or 
categorization involves a much greater conceptual leap; these constructs are heuristic, much farther 
away from their biological underpinnings or evolutionary origins, and are constructed online by 
humans’ higher-order representations. When research on the neurobiology of parenting is coupled 
with detailed observations of parental behavior in the natural habitat, it provides a closer setting to 
that of nonhuman mammals as compared to most other domains in neuroscience. Yet, notwithstand-
ing the similarity of human parental care with that of other mammals, human parenting is also greatly 
influenced by humans’ higher-order cognitive abilities and cultural construals. Thus, research on the 
neurobiological basis of parenting affords a unique view on the integration of mammalian-general 
and human-specific features on key biological processes. Because parenting is triggered by the same 
hormones across mammalian species, the hormonal basis of human parenting provides a scientifically 
plausible tool for mechanistic research as compared to other domains of inquiry (e.g., the neurobiol-
ogy of psychiatric illness); hence, the neuroendocrine basis of parenting is among the few topics that 
offer a uniform trajectory of empirical investigation across the evolutionary ladder.

The social neuroendocrinology of human parental care comprises four main lines of research. 
The first assesses the hormonal basis of parenting in healthy parents. Most of this line of research 
focuses on the hormones of motherhood; the typical hormonal changes occurring in mothers dur-
ing pregnancy, the postpartum period, and across the early years. Often, these studies examine not 
only mean-level changes but also individual differences in hormonal levels and their links with 
maternal behavior, attitudes, or personality traits. To date, the hormone receiving the most research 
in relation to mothering is cortisol (CT), possibly due to its reliable bioassay in saliva that has been 
available for some time. Yet, with the development of more sensitive bioassays, studies have also 
looked at OT, PRL, AVP, T, salivary alpha amylase (sAA), beta endorphin, and immune biomarkers 
(IL-6, salivary IgA). Another area of research within this global line is the hormones of fatherhood. 
Fathering in general, and the neurobiology of fathering in particular, has received much less research 
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as compared to mothering in both humans and other mammals, but the hormonal basis of father-
ing is a developing area of research and a growing body of literature is beginning to assess fathers’ 
hormones in relation to observed paternal behavior.

The second line of research on parental hormones examines “endocrine fit”—the “match” or 
synchrony between parent and child hormonal levels. Such biological synchrony is conceptualized 
as one mechanism by which the parental affiliative system is transferred to the child or as a way in 
which parents signal environmental danger to their offspring (Feldman, 2016, 2017; Pratt et al., 2017; 
Bornstein, 2013). Our biobehavioral synchrony model contends that such hormonal synchrony, while 
genetically informed, matures in the context of coordinated social behavior and shared parent-child 
social experiences (Feldman, 2012c, 2015a, 2016, 2017).

A third line views the neurobiology of human parenting as a global area of research, which 
includes the brain networks, hormonal systems, and specific behaviors that activate in mothers or 
fathers with the birth of an infant. Several studies in this line test associations between activations of 
specific brain areas in the parental brain with parenting-related hormones, including OT, AVP, CT, or 
T (for a review see Feldman, 2015b). It is hypothesized that the “mammalian parenting network”, the 
brain regions that support mammalian parenting, initiates its activation through sensitization by the 
hormones of pregnancy (Numan and Young, 2016), thus indicating that hormonal changes trigger 
neural alterations that define the neurobiology of parenting.

The last area of research in the neuroendocrinology of parenting, and by no means the least abun-
dant, addresses parental hormones under high-risk conditions, whether the risk stems from mother-
related conditions (e.g., maternal depression, anxiety), child-related conditions (prematurity, autism 
spectrum disorders), or contextual adversities (poverty, abuse, war exposure). Several studies of high-
risk parenting compared a high-risk cohort to a typical group, whereas others use a correlational 
design within the high-risk sample. Of note, very few studies examine fathers’ hormones in high-risk 
contexts, and a smaller number of studies address the fit between high-risk parents and children.

The following literature reviews the hormonal basis of human parenting keeping in mind its 
evolutionary origins. Due to the extensive literature on the topic, this review is by no mean com-
prehensive and addresses mainly parental hormones in the first years of life, with a focus on infancy, 
and follows the four lines of research outlined above. Consistent with the comparative approach, only 
studies that measure hormones in relation to observed parental behavior are reviewed. This approach 
accords with the view that in humans the neurobiology of parenting may trigger, not only through 
pregnancy and lactation, but via commitment to caregiving and active involvement in daily interac-
tions with the child. Thus, similar to the long line of  “cooperative breeding” in primates, the human 
“village” (grandparents, “aunties”, male partners, adoptive parents, godparents) can rear the child 
through bottom-up, behavior-based activation of the neurobiology of parenting, consistent with 
Hrdy’s (2007) suggestion that in species such as mammals parenting is behavior (Feldman, 2012d). 
This conceptualization of a bottom-up activation of the neurobiological systems that support par-
enting via parenting behavior is consistent with findings that mother-child synchrony expresses in 
the brain as brain-to-brain synchrony of gamma-band oscillations, with gamma marking a distinct 
bottom-up, behavior-based mechanism (Levy, Goldstein, and Feldman, 2017).

Hormonal Basis of Human Mothering and  
Fathering in Low-Risk Contexts

This section describes each hormonal system separately and addresses findings related to mother-
ing and fathering for each hormone. Following, a section discusses endocrine fit. Overall, hor-
mones of parenting are divided into the “affiliative hormones” module, which includes mainly OT 
but also AVP and PRL, hormones that support the formation of parent-infant bonding, maintain 
attachments, and buttress human sociality (Carter, 2014; Fleming, Ruble, Krieger, and Wong, 1997; 
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Numan, 2006). The other group involves stress-related hormones, mainly CT but also salivary alpha 
amylase (sAA) or immune biomarkers (IL-6, IgA). A third group considers sex-related hormones  
(T, progesterone, estradiol). These three classes of hormones are not independent in their action, and 
studies have shown co-dependence and mutual influences of these hormones on each other, mainly 
in complex, nonlinear ways that require much further research (Gordon, Zagoory-Sharon, Leckman, 
and Feldman, 2010a; Gordon et al., 2017). Research in rodents has further shown that the expres-
sion of maternal behavior functions on both the affiliation and stress neuroendocrine systems, with 
maternal licking and grooming building the expression of both oxytocin receptor densities in the 
nucleus accumbens (Francis, Champagne, and Meaney, 2000) and glucocorticoid receptors in the 
hippocampus of the infant’s brain (Liu et al., 1997).

Figure 6.1 describes OT and CT as the main, most well-research hormones of parenting, their 
mutual influences on other hormones, and their behavioral correlates.

Oxytocin

Oxytocin is considered the main neuroendocrine system supporting the formation and main-
tenance of the parent-infant bond and a central trigger for the expression of parental behavior 

Figure 6.1 � Key hormones of human parenting.
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(Feldman, 2015b, 2016, 2017). It is an integrative system that provides a neuroendocrine milieu for 
the functioning of multiple hormones. Numerous hormones operate in concert to support parental 
care, but OT maintains crosstalk with other hormones in the context of parenting. We found that 
OT links and interacts with a range of hormones in supporting parenting behavior, including AVP 
(Apter-Levi, Zagoory-Sharon, and Feldman, 2014), CT (Gordon et al., 2010a), T (Gordon et al., 
2017; Weisman, Zagoory-Sharon, and Feldman, 2014), beta endorphin, and IL-6 (Ulmer-Yaniv 
et al., 2016), highlighting the role of OT in integrating the affiliation, reward, stress, and immune 
systems in support of parenting.

OT is a nine-amino-acid neuropeptide hormone, which presumably evolved from the ancient 
vasotocin molecule via gene duplication in jawed fish approximately 650 million years ago (Feld-
man et al., 2016). OT is implicated in sociality across vertebrate evolution and substantial research in 
rodents has pinpointed its role in birth, lactation, and maternal care in mammals (Carter, 2014; Feld-
man et al., 2016; Lee, Macbeth, Pagani, and Young, 2009; Lim and Young, 2006). Studies have exam-
ined peripheral levels of OT—in plasma, saliva, urine, and to a lesser extent in cerebrospinal fluid—in 
relation to human parenting, aided by the availability of new and more reliable immunoassay kits. 
Associations between brain OT and its peripheral indices are not fully clear, but human studies have 
lent support to the use of peripheral OT by demonstrating marked increase in peripheral OT when 
individuals inhale OT, which has shown to impact the brain’s OT system (Neumann, Maloumby, 
Beiderbeck, Lukas, and Landgraf, 2013; Weisman, Zagoory-Sharon, and Feldman, 2012), associations 
between plasma OT and more efficient variants of the oxytocin receptor gene (OXTR; Feldman 
et al., 2012), and correlations between plasma and salivary OT with brain activations in areas rich in 
oxytocin receptors, including the hypothalamus or the amygdala (Abraham et al., 2014; Atzil, Hen-
dler, and Feldman, 2011; Strathearn, Fonagy, Amico, and Montague, 2009). The distributions of OT 
receptors in the brain are species-specific (Stevens, Wiesman, Feldman, Hurley, and Taber, 2013) and 
the nature of the relation between central and peripheral OT is a matter of ongoing debate, but an 
accumulating body of research has shown that variability in peripheral OT is meaningfully linked 
with the expression of maternal and paternal behavior in ways that are consistent with research on 
central OT in rodents.

In the first longitudinal study of OT and parenting behavior, we followed healthy women across 
pregnancy and the postpartum and measured plasma OT and cortisol (CT) at three time-points; 
first trimester of pregnancy, third trimester, and the first postpartum month when we also observed 
mothers interact with their infant in the home environment. We used an in-depth interview to 
measure maternal thoughts, preoccupations, and attachment representations. OT levels increase in 
early pregnancy and stay stably high across pregnancy and the early postpartum. OT levels during 
the first trimester predict the expression of the human species-typical maternal behavior, suggesting 
a priming effect of OT in humans. In addition, OT and CT across pregnancy are unrelated at any 
time-point, but CT levels independently predict a decrease in the expression of maternal postpartum 
behavior, indicating a joint effect of the two main hormonal systems on maternal postpartum behav-
ior similar to that found in rodents (Feldman, Weller, Zagoory-Sharon, and Levine, 2007). Another 
evidence for a priming effect was found when mothers with higher OT during late pregnancy 
reported greater bonding to their fetus (Levine, Zagoory-Sharon, Feldman, Lewis, and Weller, 2007). 
It has been suggested that mothers develop clear representations of their unborn child during the 
last weeks of pregnancy and a failure to do so, due to depression or risk for preterm delivery, impairs 
the emerging attachment (Hart and McMahon, 2006; Pisoni et al., 2016). OT in late pregnancy also 
predicts increased maternal preoccupations and more positive representations of the infant and the 
attachment relationship. Others found similar links between attachment representations and higher 
OT levels in pregnancy and the postpartum (Eapen et al., 2014). These findings, therefore, add the 
representational component to the priming effect in other mammals and show that in humans the 
higher-order cognitive dimension of parenting is similarly triggered by the oxytocinergic system.
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We next followed first-time mothers and fathers from the first postpartum month to 6 months 
postpartum and measured plasma OT in relation to maternal and paternal parenting behavior. Post-
partum parents had much higher OT levels as compared to individuals who were not parents or 
in a romantic relationship, indicating that OT levels increase when individuals become attached. In 
addition, no difference was found between mothers’ and fathers’ baseline OT, even when mothers 
were breastfeeding. Similar to the first study, OT levels in individuals were highly stable over time, 
and mutual influences between partners’ OT were observed both within and across time-points 
(Gordon, Zagoory-Sharon, Leckman, and Feldman, 2010b). This result suggests that plasma OT 
may tap a “trait-like” dimension of the individual which is individually stable yet shaped by close 
attachment relationships (Schneiderman, Kanat-Maymon, Ebstein, and Feldman, 2014). OT levels 
in mother and father were related to the parent-specific behavioral repertoire (Feldman, Gordon, 
Schneiderman, Weisman, and Zagoory-Sharon, 2010). Maternal OT was related to the “affiliative 
parenting” constellation typical of mothers, including gaze to infant face, expression of positive affect, 
“motherese” high-pitched vocalizations, and affectionate touch, the human parallel of “licking-and-
grooming” (Meaney, 2001). In contrast, fathers’ OT was linked with “stimulatory parenting”, a style 
typical of mammalian fathering, which included directing attention to the environment, stimulatory 
contact, and high, unpredictable positive arousal (Gordon et al., 2010b; Naber, van IJzendoorn, Des-
champs, van Engeland, and Bakermans-Kranenburg, 2010). These findings, the first to test plasma 
OT in new fathers, show comparable OT levels in mothers and fathers and indicate that fathers may 
be just as biologically prepared to care for infants. In comparison with mothers’, fathers’ parenting 
style is expressed via a distinct set of behaviors that prepare infants to explore their physical environ-
ment, rather than focus on the dynamics of face-to-face relationships, and this paternal repertoire is 
linked with father’s OT. Finally, observing triadic family interactions between these parents and their 
6-month-old infants we found that OT predicted triadic synchrony, the coordination of behavior 
among the three family members (Gordon et al., 2010a), highlighting the role of OT as an integrator 
of social behavior among affiliative units.

Comparing OT in plasma, saliva, and urine in a group of mothers and fathers (not couples) and 
their 4- to 6-month-old infants, we found no differences in baseline OT levels in plasma, saliva, or 
urine between mothers and fathers. Of note, OT levels in saliva and plasma showed mid-level cor-
relations, and similar associations were found in several other samples, but no correlations emerged 
between these indices and urinary OT, possibly since urinary hormone concentrations travel through 
a different bodily route. Both plasma and salivary OT were related to higher parent-infant synchrony 
(Feldman, Gordon, and Zagoory-Sharon, 2011). Similar associations obtain between mothers’ plasma 
OT response (change from baseline to post-interaction) and gaze coordination and gaze duration 
between mothers and their 7-month-old infants (Kim, Fonagy, Koos, Dorsett, and Strathearn, 2014).

In contrast to plasma and salivary OT, urinary OT predicts greater parental stress and attachment 
anxiety, highlighting the dual role of OT in linking to both the affiliative and the anxiety/vigilance 
components of parenting (Feldman, Gordon, et al., 2011). These findings are consistent with data 
from a large cohort of women and men, both parents and nonparents, which showed that in women 
plasma OT levels are positively associated with measures of attachment anxiety (Weisman, Zagoory-
Sharon, Schneiderman, Gordon, and Feldman, 2013) as well as with research in animal models 
pointing to the role of OT in modulating stress and anxiety (Neumann and Slattery, 2016). Urinary 
OT has been linked with infant caregiving behavior in cooperative-breeding marmoset monkeys 
(Finkenwirth, Martins, Deschner, and Burkart, 2016), and listening to mother’s voice during a stress 
paradigm elevated children’s urinary OT and enabled better stress management (L. J. Seltzer, Ziegler, 
and Pollak, 2010), validating urinary OT as a biomarker of parental care.

In the first months of life, parental plasma OT levels are associated with allelic variability on the 
OXTR on key SNPs associated with attachment, including OXTR  (rs2254298 and rs1042778) 
and CD38 (rs3796863), as well as with more parental touch and greater gaze synchrony, the two 
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main features of close attachment bonds (Feldman et al., 2012). These findings are consistent with 
numerous studies showing associations between more functional OXTR variants with sensitive par-
enting and attachment security throughout life (Bakermans-Kranenburg and van IJzendoorn, 2008; 
Feldman et al., 2016; Raby, Cicchetti, Carlson, Egeland, and Collins, 2013).

Consistent with findings on the cross-generational transmission of OT functionality in rodents, 
which is mediated by maternal behavior (Champagne, 2008; Champagne, Diorio, Sharma, and 
Meaney, 2001), parental OT in the first months of life shapes the infant’s OT system and this cross-
generation transmission is similarly moderated by synchronous parenting; links between parent and 
child OT are found only when parents engage in synchronous interactions, but not when minimal 
synchrony is observed (Feldman, Gordon, and Zagoory-Sharon, 2010). In another study, following 
parents and infants from the first month of life to the preschool stage, we similarly found cross-
generational transmission over time and attachment bonds. Parents’ plasma OT in the postpartum 
predicted child salivary OT at preschool as mediated by early parental behavior. Furthermore, paren-
tal OT and synchronous parenting shaped not only the child’s OT but also the degree of reciproc-
ity and positive engagement during interactions with the first best friend at 3–4 years, consistent 
with attachment theory’s predictions that parental care shapes children’s ability to enter subsequent 
attachments in their lives, with friends, mentors, and romantic partners culminating in their ability 
to parent the next generation (Feldman, 2012b; Feldman, Gordon, Influs, Gutbir, and Ebstein, 2013).

The OT response is sensitive to parental touch. Mothers and fathers were tested in the 10-minute 
“play and touch” paradigm, where a parent interacts with the infant freely and is instructed to “touch 
your infant as you normally do”. Mothers who provided abundant amounts of affectionate touch, 
but not those who provided little touch, showed an OT increase following the interaction. In parallel, 
fathers who had high levels of stimulatory contact, but not those who showed little touch, increased 
their OT levels (Feldman et al., 2010). Furthermore, infants as young as 4 months displayed OT 
increases following synchronous interactions with their parents (Feldman, Gordon, and Zagoory-
Sharon, 2010). Like rodents, human parent-specific touch, when provided in abundance, elicits OT 
response in parents, which, in turn, elicits a parallel OT response from the infant, priming the infant’s 
OT system to respond to pleasurable social touch within future attachment relationships.

Finally, animal studies have suggested that neuroendocrine changes in mothers during pregnancy 
and the postpartum provide a template for pair bonding, and, thus, there is continuity between hor-
monal processes implicated in parental and pair bonding (Numan and Young, 2016). We measured 
plasma OT, beta endorphin, and IL-6—biomarkers of the affiliation, reward, and immune systems—
in a group of first-time parents and their 3-month-old infants, a group of new romantic partners who 
had been together for 3 months, and unattached singles. Synchrony between parents and infants and 
among new lovers was microcoded. We found that all hormonal systems underwent changes with 
the formation of new attachment bonds. OT increased in parents but was highest in new lovers. In 
contrast, both beta endorphin and IL-6 were highest in parents, lowest in singles, and at mid-level in 
lovers. In addition to increase, biomarkers of affiliation, reward, and stress management coalesced, and 
the correlations between them became tighter during periods of bond formation. Finally, the effects 
of beta endorphin and IL-6 on behavioral synchrony were mediated by the oxytocin system (Ulmer-
Yaniv et al., 2016). These findings, combined with the aforementioned continuity between parental 
and filial attachment (humans’ attachment to their close friends) highlight the integrative role of OT 
across human affiliative bonds, as mediated by sensitive parenting (Feldman, 2012a, 2012c).

Research has also investigated the effects of intranasal OT administration on a plethora of human 
social functions. Several studies showed effects of OT administration on increasing fathers’ energetic 
and object-focused interactions with their toddlers (Naber et al., 2010) or on brain response to infant 
cry and laughter among nonparents (e.g., Riem et al., 2011, 2012).

In the context of parental hormones and behavior, we administered OT to 35 fathers of 5-month-
old infants in a double-blind placebo-controlled within-subject design, examined paternal and infant 
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hormones, and microcoded social behavior. As expected, intranasal OT administration markedly 
increased fathers’ salivary OT; however, surprisingly, OT administration to parent increased the 
infant’s salivary OT by 30-fold, although infants were taken out of the room where fathers inhaled 
OT and remained outside for the 45-minute waiting period. This measurable increase in infant OT 
may point to mechanisms of chemosignaling between parent and child which require much fur-
ther research. Under the OT condition, subtle differences in parent and child’s social behavior were 
observed; fathers touched infants more and gently reoriented infants back to the joint play when 
they averted gaze. Infants gazed at their fathers for longer durations and engaged in longer episodes 
of joint exploration. Autonomic signs were also higher in the OT condition, and both father and 
infant increased cardiac vagal tone, a biomarker of social engagement (Weisman et al., 2012).

OT administration to fathers also impacted the infant’s CT levels as mediated by father-infant 
synchrony. Among infants experiencing high synchrony, paternal still-face increased CT production 
and elevated infants’ social gaze to the nonattentive parent. However, among infants experiencing 
low paternal synchrony, OT reduced the infant’s stress response and decreased social gaze to the 
father during the still-face phase (Weisman, Zagoory-Sharon, and Feldman, 2013). As OT increases 
the social salience of events (Shamay-Tsoory and Abu-Akel, 2016), it is possible that among infants 
who internalized an engaged and available paternal style, the OT condition enhanced their social 
attention to father’s communicative failure.

Vasopressin

AVP is a structurally similar neuropeptide to OT, both originating from the ancient vasotocin mol-
ecule, and both implicated in mammalian fathering (Carter, 2014), but little research has examined 
peripheral AVP in relation to human parenting. Studies in rodents suggest that AVP is involved in 
physiological changes in AVP in fathers may mediate changes in energy balance and stress reactivity 
that are required for the onset of fathering (for review: Bales and Saltzman, 2016; Saltzman and Zie-
gler, 2014). AVP is associated with male bonding and defensive and territorial behavior (Bielsky, Hu, 
Ren, Terwilliger, and Young, 2005), and AVP promotes social recognition in both rodents (Cald-
well, Lee, Macbeth, and Young, 2008) and human males (Guastella, Kenyon, Unkelbach, Alvares, and 
Hickie, 2011). Regions characterized as part of the AVP circuitry are implicated in socio-cognitive 
processes in both humans and rodents (Goodson and Thompson, 2010). This AVP-brain associations 
may represent elevated AVP-dependent vigilance, which supports father’s ability to read the inten-
tion of others to defend mother and young (Thompson, George, Walton, Orr, and Benson, 2006). In 
contrast, AVP supports the mother’s ability to befriend others. Thus, AVP may prompt differential 
social strategies in social contexts in women and men (Thompson et al., 2006).

Research on AVP is predominantly male oriented as AVP has been mostly studied in the context 
of autism and aggression. Variability on the AVP receptor gene has been associated with observed 
parenting in healthy parents (Avinun, Ebstein, and Knafo, 2012) as well as the context of continuous 
trauma exposure (Feldman, Vengrober, and Ebstein, 2014). OT administration to males and females 
increases both AVP (Weisman, Schneiderman, Zagoory-Sharon, and Feldman, 2013), indicating 
affinity between the expression of the two neuropeptides.

Only two studies, to our knowledge, measured plasma AVP levels in parents. In the first, OT 
and AVP were measured in relation to neural activations in the maternal and paternal brain (Atzil, 
Hendler, Zagoory-Sharon, Winetraub, and Feldman, 2012). AVP correlated with fathers’, but not 
mothers’, amygdala response to infant stimuli, supporting the links between fathering and AVP in 
humans. In the second study, OT and AVP levels in mothers and fathers of 4-month-old infants 
were measured in relation to parent-infant interactions. No mean-level differences emerged in AVP 
between mothers and fathers, but plasma OT and AVP were associated with distinct configurations 
of parental behavior. Parents with higher OT directed their infants toward a social focus, enhancing 
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behaviors such as gaze coordination and affectionate contact, behaviors that were more prevalent in 
mothers. In contrast, parents with high AVP engaged in stimulatory contact and tended to increase 
object-salience when infants showed bids for social engagement, a behavioral profile more common 
in fathers. Thus, synchronous processes with mother and father within the family unit distinctly pre-
pare children to join the larger social world (Apter-Levi et al., 2014). (Another study followed parents 
and infants across the first 6 years of parenthood in relation to brain activations and assessed salivary 
AVP and is described below in the section on hormones and the parental brain.)

Prolactin

Prolactin (PRL) is a peptide hormone originating mainly in the anterior pituitary lactotroph cells 
(Freeman, Kanyicska, Lerant, and Nagy, 2000) that has multiple effects on reproduction and lactation 
and is thought to mediate the formation of affiliative bonds (Neumann, 2009). PRL is released within 
the hypothalamus and other limbic areas during mother-infant contact in rodents (Torner et  al., 
2004) and its administration stimulates maternal care in rats (Bridges, DiBiase, Loundes, and Doherty, 
1985). PRL has been examined in relation to fatherhood in a number of animal species (Storey, 
Delahunty, McKay, Walsh, and Wilhelm, 2006; Wynne-Edwards, 2001; Ziegler, Wegner, Carlson, 
Lazaro-Perea, and Snowdon, 2000). In humans, studies have shown that both men and women exhibit 
elevated levels of plasma PRL before childbirth, and fathers who report being more affected by infant 
cues show higher PRL (Fleming, Corter, Stallings, and Steiner, 2002; Storey et al., 2006). Experienced 
fathers show greater increases in PRL when listening to infant cries as compared to first-time fathers 
(Fleming et al., 2002). In contrast to single men, fathers’ PRL does not decline following interac-
tion with their toddler (Gray, Parkin, and Samms-Vaughan, 2007). Among fathers to 6-month-old 
children, plasma PRL correlates with OT levels and higher paternal PRL is associated with greater 
attention to the environment and joint father-child exploratory play (Gordon et al., 2010c).

In mothers, on the second post-birth day, a rise in PRL was found 20 minutes after infant suckling 
( Jonas et al., 2009). Infant stimulation of nipple induces both OT and PRL responses (McNeilly, 
Robinson, Houston, and Howie, 1983). Finally, between 4–6 weeks postpartum, higher PRL cor-
relates with lower stress and better mood only among formula-feeding mothers (Groër, 2005), and 
following cesarean delivery OT and PRL are related to lower anxiety (Nissen, Gustavsson, Wid-
ström, and Uvnäs-Moberg, 1998). Overall, early animal studies on the neurobiology of maternal 
care described the contribution of both OT and PRL, but human studies have placed much greater 
emphasis on the role of OT, with less research devoted to the links between PRL and observed 
parenting.

Testosterone

Testosterone is an androgenic steroid produced by the hypothalamic-pituitary-gonadal (HPG) axis 
that modulates reproductive behavior and plays a key role in human social behavior, particularly in 
behaviors associated with social status, at times in combination with aggressive behavior (Eiseneg-
ger, Haushofer, and Fehr, 2011; Mazur and Booth, 1998; Wingfield, Hegner, Dufty, and Ball, 1990). 
Testosterone’s involvement in parenting and pair bonding has been described in human and other 
mammals (Kuzawa, Gettler, Muller, McDade, and Feranil, 2009; van Anders and Goldey, 2010), and 
alterations in T levels in males are thought to reflect a shift between conflicting reproductive strate-
gies, from mating efforts to parenting efforts (Gray and Anderson, 2010). Studies in more than 60 bird 
species support the “challenge hypothesis”, which suggests that T levels increase when males compete 
for food and territory and decrease when males must care for offspring (Wingfield et al., 1990).

Research in biparental species shows that fathers’ T levels decrease in the presence of a dependent 
offspring (Wynne-Edwards, 2001). For example, marmoset males who carried infants the most had 
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the lowest urinary T levels (Nunes, Fite, Patera, and French, 2001) as well as the greatest declines 
in gonadal steroids (Nunes et al., 2001), and exposure to infant scent lowered serum testosterone 
in father common marmosets (Prudom et al., 2008). In the monogamous and biparental California 
mouse (Peromyscus californicus), greater T-increase during courtship is associated with paternal cud-
dling and a protective repertoire towards their pups (Gleason and Marler, 2010).

Similar findings have emerged in human fathers. High T was found in single and divorced men, 
and low T in men and women within a committed relationship as well as in new fathers (Booth 
and Dabbs, 1993; Burnham et al., 2003; Gettler, McDade, Feranil, and Kuzawa, 2011; Mazur and 
Michalek, 1998; van Anders and Goldey, 2010). During the transition to fatherhood, men decrease 
their T levels (Berg and Wynne-Edwards, 2001; Perini, Ditzen, Fischbacher, and Ehlert, 2012), and 
such decrease is associated with positive paternal behavior (Fleming et al., 2002). A  study in the 
Philippines assessing men before and after becoming fathers showed a decline in T levels in fathers, 
which correlated with the degree of father involvement in childcare (Gettler, McDade, Agustin, 
Feranil, and Kuzawa, 2013). In our study of intranasal OT administration to fathers, we found 
that lower baseline paternal T was associated with more optimal father and infant social behavior, 
including gaze, vocalizations, and touch (Weisman et al., 2014). Furthermore, OT-induced changes 
in T correlate with more positive affect, social gaze, and synchrony, consistent with the perspective 
that neuroendocrine systems in human males evolved to support committed and flexible fathering 
(Ziegler, 2000).

Very few studies test T in mothers. An increases in T was found in pregnant women (Edelstein 
et al., 2015; Fleming et al., 1997), and mothers’ T levels were associated with infants’ physical and 
socioemotional health and lower maternal depression ( J. I. Cho, Carlo, Su, and McCormick, 2012; 
J. Cho, Su, Phillips, and Holditch-Davis, 2016). We found that across the first months of parenting, 
fathers’ T is associated with lower behavioral synchrony, and mothers’ T is not directly related to 
maternal behavior (Gordon et al., 2017). However, in the context of high T, maternal OT predicts 
greater mother-infant synchrony, further supporting the mutual influences of OT on T, which 
require much further research. Assessing diurnal T in mothers and fathers of two preschool-aged 
children, among fathers more diurnal variability in T was associated with more sensitivity and respect 
for autonomy, whereas for mothers greater diurnal variability correlated with less sensitivity, further 
indicating that T carries differential effects on mothering and fathering (Endendijk et  al., 2016). 
Higher maternal testosterone and infant cortisol are associated with more positive and more frequent 
maternal interactive behaviors ( J. Cho, Su, Phillips, and Holditch-Davis, 2015). It thus appears that 
the direct and mediated effects of T on parenting, particularly mothering, requires much further 
research both in relation to the effects of T on behavior and the effects of T on other hormones.

Cortisol

Cortisol is a steroid hormone secreted by the hypothalamic-pituitary-adrenal (HPA) axis in condi-
tions of physical and psychological stress (Lupien, McEwen, Gunnar, and Heim, 2009). Cortisol is 
a key component of the stress response, and as parenting is a highly stressful evolutionarily adaptive 
process, research has pointed to CT’s participation in the vigilant component of parenting. A large 
body of research in humans and animal models links CT with the regulation of maternal behavior, 
and, to a lesser extent, with paternal caregiving (Fleming et al., 1997; Wynne-Edwards, 2001; Ziegler, 
2000). Most research on cortisol in the context of parenting is related to maternal stress, and the vast 
majority of studies utilize CT as an index of stressed parenting, associated with maternal early or 
current life stress.

The various components of the stress response are indexed in parenting research by multiple CT 
indices, including basal cortisol, cortisol reactivity to stressful paradigms, diurnal CT production, and 
hair cortisol (Levine et al., 2007). Overall, the stress response involves complex interactions between 
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the sympathetic nervous system and the HPA axis, allowing to both prepare for danger and return 
to baseline once threat is removed (Laurent, Ablow, and Measelle, 2012; Lupien et al., 2009). The 
HPA axis comprises the hormones CRH, ACTH, and cortisol, which interact with contextual fac-
tors to shape both momentary stress reactivity and long-term stress physiology (Ellis and Essex, 2007; 
Romeo, 2010). Cortisol plays an important role in the stress response by preventing over-reaction 
of the immune system to threats and acting on the hypothalamus and pituitary gland via negative 
feedback loops to foster homeostasis once safety is achieved (Kudielka, Hellhammer, and Wüst, 2009; 
Miller, Chen, and Zhou, 2007; Smyth, Hucklebridge, Thorn, Evans, and Clow, 2013).

Extant evidence in humans and animals has shown that maternal care provides social buffering 
of HPA axis activity in offspring (Hostinar, Sullivan, and Gunnar, 2014; Jessop and Turner-Cobb, 
2008; Moriceau and Sullivan, 2006; Shionoya, Moriceau, Bradstock, and Sullivan, 2007). Beginning 
in infancy, when the child’s HPA system is labile, and across childhood and adolescence, sensi-
tive parenting attenuates children’s HPA reactivity, expressed in smaller cortisol increases or quicker 
returns to baseline following stress (Albers et al., 2008; Blair et al., 2008; Berry et al., 2016; Feldman, 
Singer, and Zagoory, 2010). In contrast, insensitive parenting, expressed in intrusive, unavailable, and 
fragmented parental style, alters the development of children’s stress response and threat-detection 
neurobiological circuits (Hostinar et al., 2014) and correlates with higher CT production (Ahnert 
et al., 2004; Berry et al., 2016; Bosquet Enlow et al., 2014; Marceau et al., 2015) or inflexible cortisol 
response and reduced variability (Apter-Levi et al., 2016). Thus, a central line in the study of CT 
relates to how the nature of parental care shapes the development of children’s HPA axis functioning.

Less research on CT in the context of parenting addresses CT in the parent, and some of these 
studies measures parental CT in conjunction with child CT. The bulk of this research focuses on 
high-risk conditions (see below), with less research assessing parental CT in low-risk samples. Thus, 
from the extant literature and reviews available on the cross-generational transmission of human 
stress physiology (for review see Bowers and Yehuda, 2016) less research has focused on CT in rela-
tion to observed parental behavior in low-risk mothers, and even less research has tested paternal CT 
in relation to paternal behavior in typically developing families.

Regarding CT and mothering, in the newborn period, reports are mixed on the relations of CT 
to maternal behavior. Some found the expression of maternal behavior to correlate with higher CT 
(Fleming, Steiner, and Anderson, 1987), but our assessment of plasma CT across pregnancy and the 
postpartum month showed that CT increased in late pregnancy and higher CT predicted restricted 
maternal behavior (Feldman et  al., 2007). Starting at 3–4 months, research has measured CT in 
mothers and infants in stressful paradigms, such as the “still-face”, and most studies across infancy, 
childhood, and adolescence describe links between higher maternal CT, expressed in higher basal 
levels, greater stress reactivity, and slower recovery from stress, and less optimal parenting, expressed 
in lower sensitivity, decrease reciprocity, and greater intrusiveness (for review, Gunnar, Talge, and 
Herrera, 2009).

Although most studies on CT and stress-inducing paradigms focus on infant CT, few also test 
maternal CT. For instance, higher maternal basal cortisol and greater reactivity to the “still-face” at 6 
months are related to higher intrusiveness and lower second-by-second synchrony (Feldman, Singer, 
and Zagoory, 2010). Similarly, mothers with higher parenting-focused mindfulness show steeper 
cortisol recovery slopes following the still-face at 6 months (Laurent, Duncan, Lightcap, and Khan, 
2017). Maternal blunted cortisol awakening response (CAR), the typical increase in CT from wak-
ening to 30 minutes post-wakening, during pregnancy predicts lower infant emotion regulation as 
mediated by maternal sensitivity (Thomas, Letourneau, Campbell, Tomfohr-Madsen, and Giesbre-
cht, 2017). Similarly, higher diurnal cortisol production is linked with maternal retrospective report 
of early life stress and predicts lower sensitivity to their 2–6 months (Gonzalez, Jenkins, Steiner, and 
Fleming, 2012). Of note, among mothers and infants aged 6–12 months, those of low socioeconomic 
status (SES) had higher diurnal CT production compared to high-SES mothers and infants, as well 
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as lower adrenocortical synchrony (Clearfield, Carter-Rodriguez, Merali, and Shober, 2014). Overall, 
these studies indicate that across CT biomarkers more attuned parenting and greater maternal abili-
ties to allocate resources to the child are associated with lower CT.

In fathers, CT declines following father-toddler interaction, as does fathers’ PRL, and the decline 
in CT is greater in experienced, compared to first-time, fathers (Gettler, McDade, Agustin, and 
Kuzawa, 2011). Testing fathers of 22-month-old toddlers following father-child interactions on a 
day they spent several hours alone with the child prior to testing versus days without the child, it was 
found that CT generally declined following interaction, but a greater decline was observed when 
fathers spent time alone with the child (Storey, Noseworthy, Delahunty, Halfyard, and McKay, 2011). 
We found greater diurnal CT production in mothers of 6-month-old infants compared to fathers 
and both parents’ CT was negatively related to warmth and sensitivity during triadic mother-father-
infant interaction (Gordon et  al., 2010a). These studies highlight the stress-reducing function of 
positive father-child interaction on the father’s overall cortisol production and CT response.

The use of hair cortisol analysis in humans provides a measure of more chronic aspects of the 
stress response (Burnard, Ralph, Hynd, Edwards, and Tilbrook, 2016; Russell, Koren, Rieder, and 
Van Uum, 2012; Stalder and Kirschbaum, 2012; Staufenbiel, Penninx, Spijker, Elzinga, and van Ros-
sum, 2013). Each centimeter of hair approximates one month of cortisol secretion, thus measuring 
CT in hair presumably integrates free steroids over the time of growth (Russell et al., 2012; Stalder 
et  al., 2016), and thus hair cortisol concentrations (HCC) are thought to provide a retrospective 
month-by-month measure of cumulative cortisol secretion and serve as a reliable biomarker of 
chronic stress (Hinkelmann et al., 2013; Ouellette et al., 2015; Simmons et al., 2016; Steudte et al., 
2013; Vanaelst et al., 2012).

HCC has been studied mainly in the context of chronic stress, trauma, and psychiatric illness, and 
very few studies have integrated this measure into parenting research. In children, HCC is associ-
ated with lifetime trauma (Simmons et al., 2016), fearfulness upon school entry (Groeneveld et al., 
2013), the number of major childhood traumatic life events (Vanaelst et al., 2012), and lower SES, 
which likely involves greater chronic stress (Rippe et al., 2016; Vliegenthart et al., 2016). Higher 
parenting stress and greater child socioemotional difficulties are linked with children’s elevated HCC 
(Palmer et  al., 2013). Similarly, mild perinatal adversity, such as late preterm birth, moderates the 
links between maternal harsh parenting and HCC in 6-year-old children (Windhorst et al., 2017). 
These studies suggest that, if little research has integrated hair measurement in parents, HCC may 
be a unique biomarker of the stress response that requires much further research in the context of 
low- and high-risk parenting.

Salivary Alpha Amylase

Salivary alpha amylase (sAA) has been integrated into research on parenting and child outcomes 
an index of the sympathetic-adrenal-medullary (SAM) arm of the stress response (Hellhammer, 
Wüst, and Kudielka, 2009; Nater and Rohleder, 2009). The stress response involves the coordinated 
functioning of two major anatomically distinct systems, the SAM, which initiates the fight-or-flight 
response by increasing blood flow, respiration, cardiovascular activity, and the release of catechola-
mines (Nater and Rohleder, 2009), and the HPA system, which has a more gradual onset and is 
associated with physiological and behavioral withdrawal (Bauer, Quas, and Boyce, 2002; Tarullo and 
Gunnar, 2006). Whereas momentary stress induces immediate changes in each system, chronic stress 
exerts a lasting effect and may alter the balance between the functioning of the SAM and HPA sys-
tems (Wolf, Nicholls, and Chen, 2008). Salivary alpha amylase has mainly been tested in children and 
less commonly in parents in the context of stress, both alone and in relation to CT (Wolf et al., 2008).

In children, sAA has been tested in relation to physical health (Wolf et al., 2008), negative emo-
tional reactivity (Spinrad et al., 2009), and attachment under stress (Frigerio et al., 2009). Similar to 
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CT, the bulk of sAA studies have been conducted in high-risk samples (see below). Lower sAA was 
found among maltreating mothers and reduced reactivity to infant crying compared to nonmal-
treating mothers (Reijman et al., 2015). Insecure-avoidant 1-year-old infants had higher sAA levels 
following the strange situation paradigm and their mothers, who showed no differences in sAA, 
exhibited less vagal withdrawal in the reunion episode (Hill-Soderlund et al., 2008). Parent-child 
relationship quality predicts the associations between marital conflict and higher child sAA reactiv-
ity (Lucas-Thompson and Granger, 2014), and smoking mothers have higher salivary CT and lower 
sAA compared to nonsmoking mothers (Granger et al., 2007). In fathers of adolescent girls, higher 
interparental aggression is related to lower father sAA (Gordis, Margolin, Spies, Susman, and Granger, 
2010). Overall, it appears that sAA may be a useful marker of the SAM arm of the stress response, 
but much further clarifications are required to integrate it as a measure of optimal versus high-risk 
parenting.

Summary

As seen, the hormones of parenting in humans function in a comparable way to those supporting 
parental care in nonhuman mammals and enable the expression of the unique evolution of parental 
care across human societies. OT, AVP, and PRL appear to ignite the expression of parenting behavior, 
CT, sAA, and immune biomarkers to manage the stress involve in parenting, and T plays a special 
role in development of fathering.

Endocrine Fit: Synchrony in Parent and Child’s Hormones

Synchrony or attunement between the parent and infant’s physiological and behavioral processes 
enables mammalian parents to promote sociality and regulate stress in their young. Hormonal con-
cordance or synchrony, the match between parent and child’s hormones, is a central aspect of such 
biobehavioral attunement and a link between parent and child’s hormonal levels has been observed 
in most studies reporting on the associations between parent and child’s hormones measured concur-
rently. Hormonal synchrony is thought to stem from both genetic similarity and shared environment; 
yet research has tested the degree in such linkage in different contexts and conditions and its associa-
tion to parent-child relational variables. According to our biobehavioral synchrony model (Feldman, 
2012c, 2015b, 2016, 2017), biological synchrony is an important mechanism in the development of 
mammalian young by which the parent’s mature physiological systems externally regulate the infant’s 
immature system through the coordination of biological and behavioral processes during moments 
of social contact. We showed in multiple physiological systems, such as heart rate coupling (Feldman, 
Magori-Cohen, Galili, Singer, and Louzoun, 2011), brain-to-brain synchrony in neural oscillations 
(Levy et al., 2017), and endocrine systems (e.g., Feldman et al., 2010; Pratt et al., 2017), that syn-
chrony in biological processes is anchored in behavioral synchrony and increases during moments of 
concordance in parent and child nonverbal behavior in the gaze, affect, vocal, and touch modalities.

Consistent with findings in animal models (Hofer, 1995a), we found that biological synchrony 
operates in a system-specific manner. Thus, the following reviews the two main parenting-related 
hormonal systems, oxytocin and cortisol, in healthy and high-risk populations, with more empiri-
cal data available for CT compared to OT. The distinction between the two hormones as the main 
neuroendocrine systems supporting the affiliation and stress/vigilance components of parenting is 
also expressed in a distinction between the developmental goal of hormonal synchrony in OT and 
CT. For OT, higher parental sensitivity, synchrony, and reciprocity are associated not only with 
higher parental OT and higher infant OT, but in a closer match between their OT levels, which pro-
motes more optimal social-emotional outcomes in children. In contrast, tighter cortisol synchrony 
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is associated with greater child stress physiology and lower parental sensitivity and dyadic reciprocity 
(Pratt et al., 2017).

Parent-Child Oxytocin Synchrony

Among 4- to 6-month-old infants, we found hormonal synchrony of oxytocin both prior to and 
following a “play and touch” paradigm, and such endocrine synchrony was observed when social 
synchrony was high, not when it was low (Feldman et al., 2010). The endocrine fit of parent and 
child’s OT only in cases of high behavioral synchrony suggests that the fit between parent and child 
is based on parental behavior, consistent with research in animal models.

In three high-risk samples we found OT synchrony between parent and child. In a study com-
paring preschoolers with autism spectrum disorders (ASD) with typically developing children (TD), 
OT synchrony in both the ASD and TD group emerged between children with both their moth-
ers and fathers, with no significant differences in the magnitude of OT synchrony between parents 
or among the two groups (Feldman, Golan, Hirschler-Guttenberg, Ostfeld-Etzion, and Zagoory-
Sharon, 2014), despite the fact that levels of OT differed between ASD and TD preschoolers but not 
among their mothers or fathers (see below).

Following mothers diagnosed with Axis-I depression across the child’s first 6 years of life and their 
children, we found that depressed mothers had lower salivary OT as did their children. Fathers in 
families of depressed mothers also had lower OT, and low OT was related to the diminished mater-
nal touch and social gaze in depressed mothers (Apter-Levy, Feldman, Vakart, Ebstein, and Feldman, 
2013). Lower baseline OT and attenuated OT response to mother-child interaction was also found 
in urinary OT in mothers and children whose urinary OT levels were correlated. As stated above, 
such urinary OT concordance was sensitive to stressful aspects of the interaction and correlated 
with greater maternal intrusiveness and higher child withdrawal. Of note, among depressed mothers, 
those who still had higher OT were able to transmit a functional OT system to their child, and their 
children’s OT differed from that of controls, highlighting the protective role of the mother’s oxytocin 
functionality (Pratt et al., 2015).

Finally, in a group of children exposed to continuous war-related trauma, we found lower OT in 
war-exposed mothers and OT synchrony between mother and child. Such OT synchrony mediated 
the effects of war on the child so that high maternal OT led to higher mother-child behavioral syn-
chrony leading to reduced child’s anxiety disorders by age 10 (Ulmer-Yaniv et al., 2017).

Parent-Child Adrenocortical Synchrony

The coordination between parent and child cortisol production has been entitled by several terms, 
including cortisol coregulation, hormonal concordance, stress contagion, or adrenocortical synchrony 
(Atkinson et al., 2013; Mörelius, Örtenstrand, Theodorsson, and Frostell, 2015; Papp, Pendry, and 
Adam, 2009; Pratt et al., 2017; Ruttle, Serbin, Stack, Schwartzman, and Shirtcliff, 2011; Saxbe et al., 
2014; Stenius et al., 2008). The vast majority of studies examined the coordination of CT following 
stress paradigms and found that, when stress is elevated in mother or child, both partners increase CT 
in a coordinated fashion (Atkinson et al., 2013; Hibel, Granger, Blair, and Finegood, 2015; Mörelius, 
Broström, Westrup, Sarman, and Örtenstrand, 2012; Mörelius, Theodorsson, and Nelson, 2009; Neu, 
Laudenslager, and Robinson, 2009; Ruttle et al., 2011; Sethre-Hofstad, Stansbury, and Rice, 2002). 
Much less research has focused on the coordination of diurnal CT patterns between mother and 
child (Hibel, Trumbell, and Mercado, 2014; LeMoult, Chen, Foland-Ross, Burley, and Gotlib, 2015; 
Papp et al., 2009; Schreiber et al., 2006; Stenius et al., 2008; Williams et al., 2013), a distinct aspect of 
HPA axis functioning that is often uncorrelated with CT reactivity to momentary stressors (Edwards, 
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Clow, Evans, and Hucklebridge, 2001). Even fewer measured parent-child linkages between hair 
cortisol concentrations in mother and child have been examined, yet another dimension of HPA 
reactivity, typically unrelated to salivary response to stress (Halevi et al., 2017).

Synchrony of diurnal CT within the family is related to the amount of shared experience (Möre-
lius et al., 2012, 2015; Schreiber et al., 2006; Stenius et al., 2008). For instance, preterm infants placed 
in family care and exposed to maternal-infant skin-to-skin contact exhibit cortisol concordance, 
whereas no correlations between maternal and infant CT was found among infants placed in stand-
ard incubator care (Mörelius et al., 2012, 2015). Six-month-old infants show greater diurnal adreno-
cortical synchrony with their mothers as compared to their fathers (Stenius et al., 2008). Among 
preschool-aged children mother-child morning CT levels show linkage only on nonwork days 
(Hibel et al., 2014); and among adolescents, shared environment is a better predictor of afternoon 
CT linkage than genetic factors (Schreiber et al., 2006).

Synchrony in diurnal CT was found between mothers and children, above and beyond time 
of measurement. Mother-child reciprocity is related to lower adrenocortical synchrony, whereas 
father-child tension is marginally predictive of greater adrenocortical synchrony. Higher child diur-
nal CT production predicts a stronger linkage between maternal and child diurnal CT, suggesting 
that greater physiological stress may render children more susceptible to the effects of maternal stress 
physiology. Maternal depression, although related to attenuated child diurnal CT decline, does not 
affect adrenocortical synchrony. Adrenocortical synchrony may tap a unique aspect of HPA axis 
functioning, potentially linked with the cross-generation transfer of stress physiology. Results high-
light mothering and fathering family subsystems as moderators of adrenocortical synchrony and 
point to the role of parent-child relational stress in shaping diurnal CT linkage.

Compared to a healthy control group, synchrony in diurnal CT was found between depressed 
mothers and children, and the degree of mother-child reciprocity was related to lower adrenocorti-
cal synchrony. When children’s CT production during the day was higher, there was also a tighter 
synchrony between maternal and child CT, suggesting that greater physiological stress may render 
children more susceptible to the effects of maternal stress physiology. Maternal depression, although 
related to attenuated child diurnal CT decline, did not affect adrenocortical synchrony. These find-
ings highlight the role of parent-child reciprocity in shaping diurnal CT linkage (Pratt et al., 2017).

In a group of preschoolers with ASD compared to TD children, we found CT synchrony between 
children and both their mothers and their fathers at the three measurement points following the SF 
paradigm (Ostfeld-Etzion, Golan, Hirschler-Guttenberg, Zagoory-Sharon, and Feldman, 2015). Fur-
thermore, father-child cortisol linkage is stronger in dyads that show less reciprocity, when fathers 
were less sensitive and when children showed less self-regulation. Consistent with the prior findings, 
mother-child linkage is stronger in dyads that show less reciprocity and lower maternal sensitivity, 
demonstrating that higher CT linkage is observed in less functional dyads (Saxbe et al., 2017).

Finally, in the war-exposed group, early childhood adrenocortical synchrony is present in mater-
nal and child CT levels at both baseline and reactivity to stressors in early childhood (Feldman, 
Vengrober, Eidelman-Rothman, and Zagoory-Sharon, 2013). In late childhood (9–11) years, adren-
ocortical synchrony appears in both salivary cortisol and hair cortisol concentrations, and mothers’ 
reduced CT in the face of chronic trauma initiates a cascade of biobehavioral synchrony, linking to 
lower child CT, greater behavioral synchrony, and higher child social engagement, which, in turn, 
decreased child externalizing and internalizing symptoms (Halevi et al., 2017).

Overall, adrenocortical synchrony is thought to be a mechanism by which, beginning in utero, 
mothers signal to the developing fetus the amount of danger the environment will likely contain. 
Studies in rodents indicate that the mother’s species-typical behavior carries a unique effect on con-
solidation of the pup’s HPA reactivity (Gubernick and Alberts, 1983; Rosenberg, Denenberg, and 
Zarrow, 1970) and that mothers with lower corticosterone display more maternal behavior and their 
infants show lower HPA axis reactivity in adulthood (Francis and Meaney, 1999; Dong Liu et al., 
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1997). Cross-fostering studies show that maternal behavior has epigenetic effects on pup neural and 
behavioral responses to stress and the effects of maternal behavior exceed those of genetic disposi-
tions (Champagne and Meaney, 2001; Kundakovic and Champagne, 2015). These findings provide 
mechanistic evidence for the concordance between maternal and child HPA axis functioning and 
suggest that variability in maternal caregiving may play a role in shaping the infant’s cortisol produc-
tion and degree of their adrenocortical synchrony (Macrì, Zoratto, and Laviola, 2011).

Parents’ Hormones and the Parental Brain

Hormonal Correlates of Parent Brain Activations

Research in rodents has shown that hormones of pregnancy prepare brain structures which are 
sensitized by childbirth and form the “mammalian caregiving network”, including the amygdala, 
hypothalamus (particularly the MPOA), and the dopamine-rich subcortical ventral tegmental area 
(VTA) (for review; Numan and Stolzenberg, 2009; Numan and Young, 2016). Imaging studies of the 
human parental brain, exposing parents to auditory, visual, or multimodal stimuli of their infants, have 
revealed that the same network activates, in addition to other cortical networks implicated in empa-
thy, interoception, embodied simulation, mentalizing, and emotion regulation to form the “global 
human caregiving network” (for Review, Feldman, 2015b; Swain and Ho, 2017).

Work on the parental brain points to associations between parent’s brain activations and parents’ 
hormones. Regarding maternal brain-hormone relations, mothers’ plasma OT levels correlate with 
two nodes of the subcortical mammalian network; amygdala, mediating maternal vigilance, and 
Nucleus accumbens, linked with the subcortical dopamine reward system (Atzil et al., 2011). Salivary 
OT in mothers relates to maternal dorsal anterior cingulate cortex (dACC), a component of the 
empathy-embodied simulation network (Abraham et al., 2014), and to the hypothalamus and ven-
tral tegmental area of the subcortical mammalian network (Strathearn et al., 2009). Finally, mothers 
showing less CT reactivity have higher brain activation to their infant cry in the PAG, insula, ACC, 
and OFC, areas implicated in interoception (perception of bodily milieu) and empathy (Laurent, 
Stevens, and Ablow, 2011).

Fathers’ OT is associated with activations in the superior temporal sulcus, a key node of the social 
brain integrating mirror and mentalizing properties (Abraham et al., 2014). Fathers’ amygdala activ-
ity correlates with fathers’ plasma AVP levels (Atzil et al., 2012). Finally, fathers’ testosterone, known 
to decrease in men at the transition to fatherhood (Gettler, McDade, Feranil, et al., 2011), correlates 
with lower VTA activation and higher left caudate activation (Kuo, Carp, Light, and Grewen, 2012; 
Mascaro, Hackett, and Rilling, 2013).

Long-Term Prediction Of Parental Brain and Hormones  
for Children’s Social Development

In several studies, we measured parental neural and hormonal response in infancy in relation to child 
outcomes across the first years of life. Among primary-caregiving mothers and fathers, we found 
that the coherence of the parent’s embodied simulation network, integrating structures implicating 
in mirror and empathy functions, and parental OT predicted children’s OT in the preschool stage as 
well as their capacity to use advanced strategies for regulating negative emotions (Abraham, Hendler, 
Zagoory-Sharon, and Feldman, 2016).

Another study assessed parent brain response to coparental stimuli—stimuli depicting the partner 
as parent, in relation to observed coparental behavior, hormones, and child outcomes. Coparental 
stimuli activated the caudate, a critical node in supporting motivational goal-directed social behavior. 
Caudate-ventromedial prefrontal cortex (vmPFC) vmPFC connectivity, linking caudate with the 
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prefrontal area implicated in intersubjectivity, mentalization, and affect sharing, is associated with 
collaborative coparenting and the link between caudate-vmPFC connectivity and reduced child 
behavior problem at 6 years was mediated by the parent’s OT. Caudate connectivity with the dACC, 
which has been linked with pain perception, envy, and vigilant monitoring of social and aggressive 
response, predicts undermining coparenting across time and is linked with AVP (Abraham, Gilam, 
et al., 2017). Greater functional connectivity between the two empathy networks in the parental 
brain, the embodied simulation and mentalizing networks, predicts lower child CT reactivity and 
better emotion regulation at preschool (Abraham, Raz, Zagoory-Sharon, and Feldman, 2018).

Parental Hormones in High-Risk Conditions

A comprehensive review of parental hormones in high-risk populations is beyond the scope of a sin-
gle chapter. The following reviews studies on OT and CT in high-risk populations, focusing mainly 
on two systems—OT and the affiliative system and CT and indices of the stress response.

Oxytocin and Affiliative Biomarkers Markers

Postpartum Depression

Several studies have addressed OT functionality in mothers suffering from depression, with few stud-
ies addressing mothers with clinically diagnosed Axis-I depression, not just self-reported depressive 
symptoms. Lower OT during pregnancy and the postpartum goes with greater depressive symp-
tomatology in the neonatal period and less maternal behavior (Feldman et al., 2007). Similar findings 
were reported by Skrundz, Bolten, Nast, Hellhammer, and Meinlschmidt (2011), who showed that 
higher depressive symptoms during pregnancy predict lower plasma OT in the postpartum.

A longitudinal study followed a community cohort of depressed mothers and their families from 
birth across the first decade of life. At 6 years, depressed mothers, their husbands, and their children had 
lower salivary OT levels and greater prevalence of the more evolutionary-recent protective A allele on 
the OXTR. Lower OT was linked with reduced maternal touch and sensitive parenting (Apter-Levy 
et al., 2013). Measuring OT in urine in mother and child showed that in both depressed mothers and 
their children there was lower baseline OT and lower OT response to mother-child interactions. Such 
reduced urinary OT was related to higher maternal intrusiveness and child withdrawal (Pratt et al., 
2015). At 10 years, depressed mothers and children as a group no longer had lower salivary OT, but 
child OT mediated links between maternal depression and child externalizing and internalizing symp-
toms as well as child lower empathy as measured by two home-based paradigms (Priel et al., 2018).

Administration of OT to postnatally depressed mothers did not increase the level of sensitive 
parenting (Mah, van IJzendoorn, Smith, and Bakermans-Kranenburg, 2013) nor improve depressive 
symptoms, but increased their protective behavior to infants in the presence of an intrusive stranger 
(Mah, Bakermans-Kranenburg, van IJzendoorn, and Smith, 2015).

With regards to other hormones of the affiliation system, plasma prolactin levels are significantly 
lower in depressed mothers who were breastfeeding (Harris et al., 1989). Similarly, depressed mothers 
show lower serum prolactin levels (Groer and Morgan, 2007). To date, no study has tested maternal 
AVP in the context of depression.

Stress and Trauma

Following a cohort of children exposed to repeated wartime trauma and their mothers from early 
childhood to adolescence, we found that by 9–11 years war-exposed mothers had lower OT, but 
children as a group did not have lower OT, only those with PTSD. These mothers also had much 
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higher prevalence of psychiatric disorders, particularly anxiety disorders, PTSD, and depression, their 
children had higher levels of anxiety symptoms as well as greater prevalence of psychiatric diagnosis. 
War-exposed mothers also exhibited lower sensitivity and empathy, and their children displayed less 
social engagement, which was related to lower maternal OT (Ulmer-Yaniv et al., 2017). Children 
with ASD exhibit lower baseline OT levels, which are momentary normalized during parent-child 
contact (Feldman et  al., 2014). There is evidence that OT increases during skin-to-skin contact 
between parents and premature infants (Cong et al., 2015), findings which are consistent with the 
links between maternal proximity and licking-and-grooming with the oxytocin system in animal 
models.

Cortisol and Stress Biomarkers

Within the family of stress-related biomarkers, numerous studies assess diurnal or reactive cortisol as 
well as other stress biomarkers in relation to high-risk parenting. Most studies on CT and high-risk 
parenting address the effects of maternal stress, trauma, depression, or premature birth on the infant’s 
CT, but few studies also measure maternal hormones. Importantly, there are studies following chil-
dren from birth to adolescence demonstrating that maternal postpartum depression or perinatal stress 
alter various aspects of children’s HPA axis functioning including baseline levels, diurnal patterns, and 
variability (e.g., Halligan, Herbert, Goodyer, and Murray, 2007).

Postpartum Depression

During pregnancy and 3 months postpartum, higher depressive symptoms are associated with lower 
cortisol awakening response and flatter diurnal patterns (Scheyer and Urizar, 2016). In one study, at 
8 weeks postpartum, breastfeeding mothers underwent a social stressor while breastfeeding. Among 
depressed mothers, the surge of OT during nursing was reduced and CT levels were higher, suggest-
ing that depression attenuates the anxiolytic effects of breastfeeding on the maternal stress response 
(Cox et al., 2015). Mothers with a history of major depression combined with child abuse showed 
steeper CT decline and their infants had lower baseline CT, and more maternal comorbid condi-
tions on top of the depression, such as abuse history or PTSD, augmented the disruptions to HPA 
functioning (Brand et al., 2010). At 4–6 weeks postpartum, depressed mothers show downregulated 
HPA functioning, expressed as lower salivary CT (Groer and Morgan, 2007). In contrast, both clini-
cally depressed and clinically anxious mothers at 9 months have higher CT, augmented CT response 
to stress, and slower CT recovery, and these alterations in CT production were associated with their 
diminished sensitivity and lower infant social engagement (Feldman et al., 2009).

Following the cohort of depressed mothers and their children from birth to 10 years, we found 
that at 6 years, mothers and children did not have altered cortisol levels—both diurnal and reactive, 
but had diminished CT variability in daily patterns and in response to stress (Apter-Levi et al., 2016; 
Pratt et al., 2017). Similar findings emerged at 10 years of age (Priel et al., 2018), with less flexible CT 
patterns (lower AUCi index) at both ages associated with less optimal mothering, including maternal 
intrusiveness and diminished sensitivity, and greater child social withdrawal.

Trauma

Mothers with a history of early trauma show less positive affect and flatter cortisol patterns during a 
home visit at 6 months ( Juul et al., 2016). In a longitudinal study of children exposed to war-related 
trauma, we found in early childhood that, compared to nonexposed controls, children exposed to 
trauma since birth had reduced CT variability in response to stress. However, exposed children with 
PTSD had low and flat CT patterns, suggesting a “shut down” response, but exposed children who 
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were more resilient had elevated nonflexible levels, indicating high arousal of the system. These dif-
ferential patterns were related to differences in maternal depression, anxiety, and PTSD symptoms, 
which were higher in mothers of PTSD children, and greater proximity-seeking behavior in the 
more resilient exposed child group. Mothers and children also manifest altered patterns of salivary 
alpha amylase, and for both CT and sAA there were close links between maternal and child’s hormo-
nal levels (Feldman, Vengrober, et al., 2013). These findings—which differentiate trauma survivors or 
trauma-exposed individuals with and without PTSD—are consistent across several samples and vari-
ous traumas, such as survivors of the 9/11 attack, the Holocaust, and abuse (Yehuda and Bierer, 2007).

At 10 years of age, we measured both hair cortisol and salivary CT response from mothers and 
children in the same sample. Mothers who lived in a war zone for over a decade had higher hair CT, 
indicating greater chronic stress, as well as greater salivary CT production during a home visit. These 
altered maternal patterns impacted the child’s pattern via mechanisms of cortisol linkage, charting a 
pathway from trauma exposure to higher psychopathology in children (Halevi et al., 2017).

Autism Spectrum Disorders

Mothering children with ASD involves high levels of stress, yet few studies have assessed maternal 
CT in the context of ASD, and even fewer compared CT levels with observed parenting. Moth-
ers and fathers of children with ASD have lower morning cortisol levels, indicating effects of the 
increased stress on daily stress response (Foody, James, and Leader, 2015). Similarly, 89% of mothers 
of ASD children display a blunted diurnal CT response, indicating decreased flexibility of the system 
(Dykens and Lambert, 2013), and another study reported lower CT production throughout the day 
in mothers of adolescents with ASD (Seltzer et al., 2010).

We assessed CT production in 3- to 6-year-old children during a home visit with mother and a 
parallel home visit with father, where they faced the same experimental stress manipulations (emo-
tion regulation tasks and “still face”). We found no differences between the CT response of moth-
ers and fathers to children with ASD as compared to control parents; however, children with ASD 
showed blunted CT responses during interaction with mothers, but typical responses during the 
visit with father. We interpreted the findings in terms of fathers’ pushing children to act more in 
age-appropriate ways and mothers providing social buffering to children’s stress response in a similar 
manner to mammalian neonates (Ostfeld-Etzion et al., 2015).

Prematurity

Kangaroo care (KC), or skin-to-skin contact, is an intervention aimed to reduce maternal-newborn  
separation and enhance contact among infants born preterm. Skin-to-skin contact decreases mater-
nal CT following premature birth ( Janevski, Vujičić, and Đukić, 2016). Another study showed 
reduction of infant CT in a group receiving kangaroo care and linkage between maternal and infant 
CT at 4 months only in the KC group (Mörelius et al., 2015). Reduced CT levels across the first 
month following birth were also observed in a full-term sample (Bigelow, Power, MacLellan-Peters, 
Alex, and McDonald, 2012). In our study of kangaroo care and its long-term impact, by 10 years of 
age children who received kangaroo care as neonates had attenuated CT responses to social stress-
ors (the TSST-C) and their mothers similarly had lower CT production (Feldman, Rosenthal, and 
Eidelman, 2014).

Hormones of parenting provide biomarkers for stressed or high-risk parenting, hormonal lev-
els are associated with the parent psychological state, history, psychiatric condition, and observed 
behavior, and hormones demonstrate the utility of using neuroendocrine measures to expand our 
understanding of at-risk parenting.
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Conclusions

Individual variations in hormones play a key role in the development of parenting and are meaning-
fully associated with variations in maternal and paternal behavior. There is much we do not know 
which requires future research. First, there are currently no normed curves for hormones across 
pregnancy and the first year following childbirth. With the growing incorporation of hormones 
into parenting research, there is a critical need for large-scale studies that can define normative 
curves across multiple cultures for future research. Second, changing role of fathers and the growing 
involvement of fathers in childcare prompts much research to understand the neuroendocrinological 
basis of fatherhood. Third, much research is needed to compare hormonal profiles across a variety of 
high-risk conditions and to tease apart single from multiple risk, for instance maternal depression in 
the context of low-risk environment, from maternal depression occurring in the context of poverty, 
premature birth, or child abuse. Finally, much more research and theory-building are needed to test 
the hormones of parenting within a global bio-psycho-social theory of parenting that investigates 
endocrine systems from a comparative perspective and across levels of analysis, incorporating studies 
of the cellular, genetic, and neural levels with behavioral and representational levels, into a theoretical 
frame that can define more precisely how hormones of parenting contribute to the successful rearing 
of human children.
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