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ABSTRACT
Oxytocin (OT), a nonapeptide signaling molecule originating from an ancestral peptide, appears in different variants
across all vertebrate and several invertebrate species. Throughout animal evolution, neuropeptidergic signaling has
been adapted by organisms for regulating response to rapidly changing environments. The family of OT-like
molecules affects both peripheral tissues implicated in reproduction, homeostasis, and energy balance, as well as
neuromodulation of social behavior, stress regulation, and associative learning in species ranging from nematodes to
humans. After describing the OT-signaling pathway, we review research on the three genes most extensively studied
in humans: the OT receptor (OXTR), the structural gene for OT (OXT/neurophysin-I), and CD38. Consistent with the
notion that sociality should be studied from the perspective of social life at the species level, we address human
social functions in relation to OT-pathway genes, including parenting, empathy, and using social relationships to
manage stress. We then describe associations between OT-pathway genes with psychopathologies involving social
dysfunctions such as autism, depression, or schizophrenia. Human research particularly underscored the involve-
ment of two OXTR single nucleotide polymorphisms (rs53576, rs2254298) with fewer studies focusing on other OXTR
(rs7632287, rs1042778, rs2268494, rs2268490), OXT (rs2740210, rs4813627, rs4813625), and CD38 (rs3796863,
rs6449197) single nucleotide polymorphisms. Overall, studies provide evidence for the involvement of OT-pathway
genes in human social functions but also suggest that factors such as gender, culture, and early environment often
confound attempts to replicate first findings. We conclude by discussing epigenetics, conceptual implications within
an evolutionary perspective, and future directions, especially the need to refine phenotypes, carefully characterize
early environments, and integrate observations of social behavior across ecological contexts.
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EVOLUTIONARY ASPECTS OF THE OXYTOCIN
SIGNAL PATHWAY

Vasopressin (AVP) and oxytocin (OT)—two closely related
nonapeptides—are ancient and conserved peptides dating
back more than 600 million years (1). The AVP/OT family
originates from an ancestral peptide anteceding protostomian
and deuterostomian animals that appears in different variants
in all vertebrates, including mammals (oxytocin/arginine-vaso-
pressin), bony fish (isotocin/vasotocin), and other nonmam-
malian vertebrates (mesotocin/vasotocin), and several
invertebrates, including echinoderms (echinotocin), mollusks
(cephalotocin/lys-conopressin), annelids (annetocin/lys-cono-
pressin), arthropods (inotocin/crustacean-VP), and nematodes
(nematocin) (2,3). The AVP/OT family presumably evolved via
gene duplication from the ancestral vasotocin peptide of
jawed vertebrates (4); gene duplication is a common evolu-
tionary pathway toward the adaptation of genes to new
functions (5). Within the mammalian lineage, peptides vary
by a single amino acid and their genes are found near each
& 2016 Society of Biological Psychiatry
logical Psychiatry February 1, 2016; 79:174–184 www.sobp.org/journa

SEE COMMENTA
other on the same chromosome (6), and variants in this
receptor are thought to account for species-selective recog-
nition, ligand binding profiles, and activation of receptors (7).

Throughout animal evolutionary history, neuropeptidergic
signaling has been adapted by organisms for regulating phys-
iological and behavioral response to rapidly changing environ-
ments, and the OT molecule is critically involved in multiple life-
sustaining social and nonsocial functions in species ranging
from nematodes to humans (Figure 1). In invertebrates, OT is
implicated in associative learning and sensory processing in
nematodes and egg-laying behaviors in annelids. In nonmam-
malian vertebrates, OT analogues have been shown to modulate
male courting behavior in lizards, long-term memory formation
and vocal circuitry in fish, flocking behavior in birds, and
reproduction-related behavior in toads. Finally, in mammalian
vertebrates, the AVP/OT family affects both peripheral tissues
implicated in reproduction, homeostasis, osmotic regulation,
gustatory functions, and energy balance, as well as central
neuromodulation of social behavior, stress regulation, and
associative learning (8–10). Such wide-ranging roles for the OT
l ISSN: 0006-3223
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Figure 1. The role of oxytocin
across animal evolution. The scheme
illustrates the widespread distribution
of oxytocin–vasopressin-like signaling
system with roots deep in evolution-
ary time, attesting to the unique prop-
erties of such short peptides as
information molecules both peripher-
ally and in central nervous systems.
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molecule across evolution demonstrates its critical importance
for a variety of basic life functions. Moreover, these functions
have been repurposed in diverse ways at the level of the species
to underpin social life in ways that support the social organization
of that species. Overall, the multipurpose species-specific OT
system lends support to evolutionary perspectives theorizing that
complex abilities co-opt basic ones and social functions are
superimposed upon fundamental regulatory pathways (11).

Understanding how OT played a role in fine-tuning neuronal
circuits for social behavior across evolution leading to the
complexity of human social functions is a central challenge in
the construction of a comprehensive theory for social neuro-
science (12,13). Detecting commonalities in pleiotropic effects that
describe the influence of a single gene on apparently nonrelated
phenotypes may help define the underlying neurochemical path-
ways that buttress human-specific social traits (14). For instance,
myoactivity—the stimulation of tissue contraction—is among the
most conserved functions of OT (15). Myoactive effects of the OT
Biological Psy
family peptide on rhythmic-patterned behavior are observed in
egg laying in invertebrates (16–19), stereotypical twisting in
leeches (20), coordinated male mating behavior in nematodes
(21), coupling of peptide secretion with light cycles in fish (22), and
resonating with the repetitive-rhythmic synchronous exchange
during human parent-infant interactions that introduce 3-month-
olds into the social world and foreshadow human social com-
petencies (23,24). The sequencing of such patterned motifs is
coordinated by OT-like signaling between sets of cells in the
simplest organisms, like C. elegans, that involve sexually dimor-
phic and nondimorphic neurons comprising both central and
peripheral effects (3). Cells producing OT-related peptides are
found in similar neurosecretory brain centers across species and
taxa and are characterized by a typical molecular fingerprint (7,25).
Gene regulatory features of the OT-type neuronal cell point to dual
sensory-neurosecretory properties, suggesting that the ancient OT
signaling system functioned to convert sensory inputs into online
behavioral response supported by peptidergic secretion (3).
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Figure 2. Schematic presentation
of the oxytocin signaling pathway. Gq
is a heterotrimeric G protein subunit
that activates phospholipase C (PLC);
PLC is important in signal transduction
pathways (second messenger genera-
tion); diacylglycerol (DAG) functions as
a second messenger signaling lipid;
PKC is protein kinase C, a class of
enzymes that cleave phospholipids and
is important in signal transduction path-
ways. MAPK, mitogen-activated protein
kinase; OXT, oxytocin; OXTR, oxytocin
receptor.
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Despite the rich evolutionary history of the OT signaling
pathway, this review focuses on OT-pathway genes and social
functions in humans. Yet, our review adapts an evolutionary
perspective and follows three principles advocated by com-
parative OT research: 1) deconstructing sociality (26); 2)
repurposing of nonsocial to social brain functions as mediated
by OT (25); and 3) utilizing a behavior-based approach to
understanding OT’s role in mammals (27).

Deconstructing sociality is a term coined by Goodson (26) to
argue that OT effects on social functions, as well as organ-
ization of OT neurocircuitry and receptor localization, did not
evolve in a uniform fashion. Rather, OT effects on sociality were
assembled from loosely tied species-specific modules—com-
ponents that define social life in that species, such as parenting,
mating, group living, or social hierarchies that also include
behaviors such as cooperation (trust), territoriality (outgroup
derogation), gregariousness (loneliness), or the sensory and
cognitive processes required for navigating the social ecology
(social cognition/empathy). Thus, OT effects on sociality must
be studied in relation to the relevant modules that define what it
means to be social in that species. Repurposing of nonsocial to
social functions is among the most conspicuous threads in the
evolutionary history of OT. A central motivating force behind
such repurposing is the use of social functions to manage
stress, particularly regulating the stress involved in adaptation
176 Biological Psychiatry February 1, 2016; 79:174–184 www.sobp.or
to harsh ecologies and managing life within large social groups
(9,26). Finally, a behavior-based approach utilizes specific
processes that define mammals as windows to study OT’s role
in humans, particularly parent-infant and pair bonding (27). For
instance, OT’s role in human social behaviors was initially
informed by research in voles, which showed that differences
in OT receptor distribution in monogamous and polygamous
vole species that display marked differences in bonding-related
behavior often depend on a few polymorphic genes (28).
GENETICS OF THE OXYTOCIN SIGNAL PATHWAY

Figure 2 illustrates the architecture of the OT-signaling path-
way. From this complex pathway, the literature suggests that
only three genes have been investigated in relation to human
social behavior: the OT receptor (OXTR) (29), the structural
gene for OT (OXT)/neurophysin-I (30), and CD38 (31), with
human studies mainly focused on OXTR (32) and CD38 (23).

OXTR is a 389 amino acid polypeptide with 7 transmem-
brane domains and belongs to class I G protein-coupled
receptors that are located at 3p25–3p26.2 (8). The length of
the gene region is 17 kilobase and it consists of three introns
and four exons. Tagging single nucleotide polymorphisms
(SNPs) examined in association with social behavior are
shown in Figure 3.
Figure 3. The oxytocin receptor
gene. The oxytocin receptor is a
representative member of the rhodop-
sin-type (class I) G-protein coupled
receptor family. The 50 upstream
region is characterized by a number
of transcription factor binding sites
that are important in regulation of
receptor transcription.
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Figure 4. The CD38 gene. We also
note a rare polymorphism that caused
tryptophan to replace arginine at
amino acid residue 140 (R140W;
[rs1800561, 4693C . T]) was found
in .6% to 4.6% of the Japanese
population, but not in Korean or Cau-
casian population, and was asso-
ciated with autism spectrum disorder
in a small case-control study. This
rare single nucleotide polymorphism
is not shown in the diagram but is
located in exon III.
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CD38 is a nicotinamide adenine dinucleotide ectoenzyme,
generating cyclic adenosine diphosphate-ribose and adeno-
sine diphosphate-ribose, in addition to nicotinic acid adenine
dinucleotide phosphate (33). CD38/adenosine diphosphate-
ribosyl cyclase plays a role in hormone secretion and cell
proliferation, differentiation, and migration. It is a transmem-
brane receptor with adenosine diphosphate-ribosyl cyclase
activity that mobilizes downstream intracellular calcium signal-
ing pathways (34). Interestingly, CD38 expression is high in the
brain, plays an obligatory role in central OT release (31), and
modulates social memory in rodents (35). The structure of the
CD38 gene and tagging SNPs is shown in Figure 4.

Neurophysin I and neurophysin II, which code, respectively, for
OT and AVP, are located on 20p13 in humans (8). Across species,
OT and AVP genes are on the same chromosomal region but are
oppositely transcribed, suggesting that the origin of these two
nonapeptides is the result of an ancestral gene duplication.
Neurophysin I has three exons: the first exon encodes a trans-
locator signal, the nonapeptide hormone, the tripeptide processing
signal (glycine-lysine-arginine), and the first nine residues of
neurophysin; the second exon encodes the central part of neuro-
physin; and the third exon encodes the carboxyl-terminus-terminal
region of neurophysin.

A central question underpinning genetic research on OT-
pathway genes involves the mechanisms by which allelic
variability impacts human social functions. One possibility is
that so-called efficient gene variants, encoding a more efficient
receptor and hence more robust OT signaling, may open
individuals to the beneficial effects of a social/affiliative process,
for instance, using social support during stress (36). It is also
possible that for individuals with more efficient variants, social
stimuli are more salient, enhancing social information process-
ing (37). Finally, the close links between the oxytocin and
dopamine systems (38,39) give rise to the hypothesis that
individuals with more efficient alleles draw more reward from
social contact, leading to approach orientation and reducing
susceptibility to psychopathologies of social isolation (40).

OT PATHWAY GENES AND HUMAN SOCIAL
FUNCTIONS

Consistent with our view that this ancient peptide system
played a key role in evolutionary processes that supported
Biological Psy
survival-related social functions and increased fitness by
enhancing affiliative behavior (10,41) and augmenting salience
of crucial social phenomena (42,43), human research has
demonstrated associations between OT-pathway genes with
social functions essential for the individual’s integration into
various social milieus. In the following, we detail association
studies between OT-pathway genes and human social func-
tions and psychopathology. Findings on OXTR are summar-
ized in Table S1 in Supplement 1.

Affiliation

Parental Attachment. There is evidence linking more
efficient variants of OT-pathway genes with more optimal
parental behavior. Mothers carrying the OXTR rs53576GG
genotype engaged in more sensitive interactions with their
infants (44). Two neurophysin-I (OXT) SNPs, rs2740210 and
rs4813627, were associated with motherese vocalizations
during mother-infant interactions (45) and genotype by early
caregiving effect emerged for maternal instrumental care. A
study of 323 mothers, fathers, and nonparents showed that
risk alleles on OXTR (rs2254298, rs1042778) and CD38
(rs3796863) genes were associated with less parental touch
and the interaction of high plasma OT and low-risk CD38 alleles
predicted longer durations of parent-infant gaze synchrony.
Parents who reported more optimal caregiving in childhood
had greater plasma OT, low-risk CD38 alleles, and more touch
toward their infants (23). Following parents and their firstborn
infants from birth to 3 years, parents’ behavioral synchrony at
1 and 6 months and mothers’ CD38 allele predicted children’s
social reciprocity during interactions with their best friend at
3 years, indicating that the transfer from parent-infant attach-
ment to attachment with close friends is supported by OT-
pathway genes mediated by parenting behavior (46). Continu-
ity in attachment security from 12 months to 26 years was
moderated by OXTR rs53576; only among GG homozygous
subjects was attachment security in infancy predictive of
attachment to romantic partner in adulthood (47).

OXTR has been studied in relation to parents’ brain
patterns. Two OXTR SNPs (rs1042778, rs53576) were asso-
ciated with brain responses to child stimuli in the orbitofrontal
cortex, anterior cingulate cortex, and hippocampus; the
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rs53576A allele correlated with positive parenting and with
activations in these areas (48). Similarly, only OXTR
rs53576GG homozygotes preferred infant faces after OT
administration (49) and displayed greater reactivity to cry
sounds, except among those reporting high depressive
symptoms (50). Finally, assessing mothers’ and nonmothers’
event-related potential response to infant and adult faces of
strong and mild intensity, mothers with OXTR rs53576GG
genotype showed early-latency differential frontal response to
intense facial expression, particularly infants’ faces, suggest-
ing that differential brain responses to infants’ and adults’
emotional cues are mediated by OXTR (51).

In a family-based study, OXTR rs53576AA homozygous
mothers were less warm toward their children (52). African-
American adults with the OXTR rs53576G genotype coupled
with more constructive childhood memories reported greater
positive affect and resilient coping (53). OXTR rs2254298 A
allele was associated with infant attachment security but only
in non-Caucasian infants (54). Maltreated OXTR rs53576GG
homozygous adolescents reported more internalizing symp-
toms, with no allelic effect on nonmaltreated children (55),
suggesting that OXTR rs53576GG homozygotes may be more
attuned to negative rearing experiences. These findings indi-
cate that OXTR effects are partly mediated by early environ-
ment and the more efficient genotype may open children to
greater susceptibility to contextual influences.

Romantic/Couple Relationship. Among Swedish twins,
OXTR rs7632287A-carrying women reported more marital crisis
and less pair-bonding behavior (56). OXTR polymorphisms
buffered spillover between marital and parenting quality; asso-
ciation between marital conflict and maternal sensitivity was
found only for rs53576GG carriers but not for AA/AG (57).
Among new lovers, five OXTR SNPs, rs1042778 (exon 4),
rs13316193, rs2254298, rs2268494, and rs2268490 (intron 3),
were combined into a cumulative genetic risk index and higher
cumulative risk predicted lower observed empathy during
support-giving interactions between new lovers (58). Combined
with findings that plasma OT levels increase during human pair-
bond formation, results implicate OT in the capacity to form
partner relationship, possibly by supporting social behaviors that
promote pair bonding (25). Further support for this notion comes
from neural imaging studies (59), suggesting that both maternal
attachment and romantic love activated overlapping regions in
the brain’s reward system that are rich in OT receptors.

Friendship. Although no study examined OXTR in relation to
observed behavior between friends, A SNP on the CD38 gene,
rs12644506, was associated with social integration and social
connectedness (60), and OXTR rs4686302 (exon 3) correlated
with social connectedness in men. Women, but not men, with
the OXTR rs53576A allele reported more social connected-
ness than GG homozygous subjects. Conversely, OXTR
rs53576A-carrying girls reported higher loneliness (61). Finally,
OXTR rs53576GG homozygotes were rated by independent
judges as more prosocial than A carriers and expressed more
affiliative cues (62). Overall, these findings highlight the
involvement of OT-pathway genes in bond formation and
reciprocal behavior within social relationships.
178 Biological Psychiatry February 1, 2016; 79:174–184 www.sobp.or
Human Social Competencies

Whereas bonding describes a mammalian general process,
OT-pathway genes have also been implicated in higher order
human social functions that rely on cortical structures and
associative processes, including empathy, generosity, social
information processing, social networks, or creativity in stud-
ies utilizing self-reports, brain imaging, and economic games.
Here, we detail studies on empathy/theory of mind and
research addressing other social functions appears in
Supplement 1.

Empathy, Theory of Mind. Empathy, "the capacity to
share, understand, and respond with care to the affective
states of others" (63), is considered a hallmark of human
sociocognitive function, develops on the basis of synchronous
parenting (64), and requires regulatory skills and mentalizing
abilities (65). Although most studies examined OXTR and
empathy in adults, a family-based study of 350 toddlers
showed that a haplotype located in the third intron (comprising
markers from rs11131149 to rs2254298) correlated with higher
social cognition, including joint attention, empathy, and self-
recognition (66). Among 4.5-year-olds, more copies of the
major allele on OXTR rs11131149 interacted with maternal
sensitivity to predict children’s theory-of-mind (ToM) skills, the
ability to infer others’ mental states from behavior (67).

In adults, OXTR rs53576GG homozygous subjects displayed
greater sympathetic arousal and self-reported empathic con-
cern to pictures of others’ pain (68). OXTR rs2268498CC
carriers and OXTR rs53576AA carriers displayed higher
empathic accuracy, and among OXTR rs2268498CC homozy-
gous subjects, empathic accuracy correlated with stronger
superior temporal sulcus response to others’ pain (69). Two
studies demonstrated that OXTR rs53576A carriers showed
reduced empathy in the Reading the Mind in the Eyes Test
(70,71), a ToM test requiring inference of mental state from
pictures of eyes. Only among rs53576GG and rs2254298A-
carrying mothers was association found between maternal
empathy and tendency to stop smoking during pregnancy
(72). Differences in hypothalamic gray matter and structural
coupling of hypothalamus and anterior cingulate cortex were
observed among OXTR rs53576A carriers, and AA homozygous
subjects scored lower on empathy (73). Finally, variations in
OXTR rs53576 interacted with fetal testosterone (ratio of the
length of the second and fourth digits [2D:4D] as proxy) to
predict men’s, but not women’s, ToM performance on Reading
the Mind in the Eyes Test (74), and OXTR rs53576G carriers
showed enhanced empathy in research using both genetic
association and imaging genomic strategies (75).

Utilizing Social Relationships to Manage Stress

Polymorphic variability on OT-pathway genes has been impli-
cated in the propensity to use social relationships to manage
stress; however, culture and gender often moderate these
effects. Distressed American OXTR rs53576G carriers tended
to seek emotional support, while AA homozygous subjects did
not, and no differences were found among Koreans (76).
Notably, differences were also found in the stress response;
male OXTR rs53576A carriers showed higher sympathetic
cardiac control in response to stress, whereas GG
g/journal
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homozygous subjects showed lower cortisol awakening
response (77). Using functional imaging, OXTR rs53576AA-
carrying female subjects showed increased harm avoidance
scores relative to G carriers, in addition to smaller amygdala
volumes and reduced resting-state functional coupling
between prefrontal cortex and amygdala, indicating greater
stress susceptibility (78). Greater perceived threat interacted
with OXTR rs53576 in predicting engagement in volunteer
work (79), and higher perceived threat correlated with less
charitable/volunteer activity among OXTR rs53576AA/AG car-
riers but not among GG (79). In a study of altruistic attributes,
charitable behavior buffered the association of life stress on
new physical ailments among OXTR rs53576A carriers but not
among GG (80).

To assess the links between OXTR, stress, and social
relationships in an experimental paradigm, adult male subjects
were randomly assigned to prepare for the Trier Social Stress
Test alone or with support from a female partner or close
friend. OXTR rs53576G carriers showed lower cortisol stress
response after social support compared with no support,
whereas no effect was observed in AA homozygous subjects,
suggesting that the protective effects of support may depend
on OXTR (81) and is consistent with research showing that
OXTR rs53576G carriers have lower cortisol response to the
Trier Social Stress Test (36). Love et al. (82) used positron
emission tomography scans with the dopamine ligand raclopr-
ide to understand how OXT (neurophysin-I) is linked to
dopaminergic function in humans. Only female rs4813625C-
allele carriers showed increased stress-induced dopamine
release; more stress-induced dopamine release was linked
with lower emotional well-being only in female rs4813625C-
allele carriers. Overall, these studies lend support to the notion
that OT functions as an antistress hormone, possibly by
enhancing social behaviors and the ability to draw comfort
from social contacts.

OT-PATHWAY GENES AND PSYCHOPATHOLOGY

The involvement of OT-pathway genes in multiple psychiatric
conditions highlights the social components of these disorders
and their underlying neurobiology as core features of most
psychiatric illnesses. Both family-based and population-based
studies linked allelic distributions on several OXTR SNPs with
pathologies involving social dysfunction. Studies related to
autism spectrum disorder (ASD), depression, and schizophre-
nia are reported here, whereas studies associated with post-
traumatic stress disorder, borderline personality disorder, and
psychopathy appear in Supplement 1.

Autism Spectrum Disorder

ASD has been the focus of much research on OT-pathway
genetics reflecting the hypothesis that OT synaptic trans-
mission may play a role in the disorder (83). Several studies
showed association between ASD and OXTR (84–91) and
AVPR1a (92–96) polymorphisms. Associations between the
OXT (neurophysin-I) rs2770378 and autism-like traits were
observed for language impairment and restricted behaviors
among 1774 Swedish twin female, but not male, subjects (97).
Whereas associations between OXTR rs2770378 and ASD
were found in one study (98), they were not replicated (99).
Biological Psy
Skuse et al. (100) examined 198 probands with ASD, 153
unaffected siblings, and 311 parents and found that OXTR
rs237887A homozygous subjects showed better face recog-
nition memory. A recent meta-analysis (101) found associa-
tions between ASD and the OXTR SNPs rs7632287, rs237887,
rs2268491, and rs2254298, and OXTR was also associated
with ASD in a gene-based test. This meta-analysis is the most
complete examination of the association of OXTR with ASD
to date.

Several studies examined CD38 in autism (97,102–105). In
the first study (103), 10 SNPs and mutations of CD38 were
examined and the CD38 SNPs rs6449197 and rs3796863 were
linked with high-functioning ASD in US participants but not
Japanese participants and findings were partially replicated
among Israeli subjects (105). Ebstein et al. (106) genotyped
170 subjects with ASD, testing both individual SNPs and
haplotypes in OXT (neurophysin-I). Nominal association was
observed between ASD and OXT rs6133010, as well as two-
locus, three-locus, and four-locus haplotypes; however, this
association was not replicated (97).

Depression

Of particular importance in the context of depression is OXTR
rs2254298. Brune (107) suggests that the A allele on the OXTR
rs2254298 is a more evolutionarily recent allele that confers
resilience under harsh rearing conditions, which often play a
role in susceptibility for depression.

Having a mother with recurrent major depressive disorder
(MDD) interacted with OXTR rs2254298 to predict daughters’
depression and social anxiety (108), but these findings did not
replicate (109). OXTR rs53576A-carrying adolescents whose
mothers were depressed showed the highest depression scores
(110), and among adolescent girls, maternal MDD combined with
OXTR rs2254298 predicted daughters’ depression with the
heterozygous genotype AG constituting the greatest risk (108).
Interaction between OXTR rs139832701 and early stress pre-
dicted depressive symptoms and increased anxiety; however,
there was no effect of this SNP on brain expression using in
silico analysis (111). In a community cohort (112), maternal MDD
was measured repeatedly from birth to 6 years. The OXTR
rs2254298GG genotype was overrepresented in depressed
mothers, their husbands, and their children, and all family
members showed lower salivary OT. Children of depressed
mothers had a fourfold increase in the propensity to develop a
psychiatric disorder by age 6. However, presence of the OXTR
rs2254298A allele in the depressed mothers markedly decreased
the risk of child psychopathology. Finally, only among children of
depressed mothers who were OXTR rs53576GG homozygotes
was there an increased sensitivity to detect sad faces and
reduced sensitivity to detect happy faces, which was not found
among A carriers (113).

Two recent reviews discuss the role of OT in mood
disorders and depression (114,115). OXTR rs53576G carriers
were characterized by greater depressive symptoms than AA
homozygous subjects but only among individuals reporting
early maltreatment (116), possibly suggesting that the positive
effects of the G allele may be dependent on rearing conditions.
Among individuals with unipolar and bipolar depression (117),
OXTR rs53576GG carriers with unipolar depression reported
higher separation anxiety.
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Schizophrenia

Several studies examined the association between OXTR and
schizophrenia (118,119). Among schizophrenia patients, OXTR
rs53576A carriers had more empathic concern than GG
homozygous subjects (120). Comparing 406 schizophrenia
patients with 406 control subjects, associations were found
between OXTR rs53576A carriers and rs237885T carriers and
diagnosis of schizophrenia (119). Among patients, the OXTR
rs2268493 T allele was related to poorer social-cognitive index
but not with clinical symptoms (121). Variants in the OXTR
were nominally associated with severity of symptoms
(rs237885, rs237887) and improvement in positive symptoms
following clozapine treatment (rs11706648, rs4686301,
rs237899) (122).

Overall, the associations found between OT-pathway genes
and psychiatric disorders lend support to the aforementioned
evolutionary perspectives and suggest that for a species as
hypersocial (eusocial) as humans, social abilities are most
relevant for the individual’s adaptation, whereas psychiatric
disorders reflect primary disruptions in social functions as
mediated by its biological underpinning.

EPIGENETICS, CONCEPTUAL IMPLICATIONS, AND
FUTURE DIRECTIONS

Epigenetics

Methylation modulation of the OXTR gene at the level of DNA
is a topic of increasing interest (123,124). Methylation is a
chemical modification of DNA that plays an important role in
gene activity by regulating transcription and ultimately the
amount of protein produced. High levels of methylation on
cytosine-phosphate-guanine (CpG) sites typically lead to
decreases in gene expression. Studies of DNA methylation,
as well as other modifications of DNA and structural proteins
of chromosomes, comprise the so-called epigenetic
approach, and recent methylation studies attempt to provide
deeper understanding on how early environments influence
adult behavior (123). In the human OXTR gene, there is a CpG
island from 140 base pair upstream to 2338 base pair down-
stream of the transcription start site and the methylation status
of this region affects transcription (125). Methylation of the
OXTR CpG island promoter inhibits its transcription, as shown
in the liver (125), and is likely to regulate tissue-specific gene
expression across various organs. There is a growing con-
sensus that early environments can modulate methylation of
genes crucial for neurodevelopment (126–128) including OXTR
methylation. Studies on methylation of OXTR in relation to
psychopathology and stress response are described in
Supplement 1.

Importantly, failure to examine epigenetic modulations of
OT-pathway genes may be one reason for the lack of
conclusive findings in a recent meta-analysis on OXTR
rs53576 and rs2254298 (129). In addition to the combination
of multiple behaviors under global categories, which may be
poor phenotypes for genetic association studies, expression
of OXTR may be impacted by epigenetic signatures (126).
Animal studies suggest that epigenetic markers, including
methylation and histone acetylation of OXTR, are important
in regulating OXTR and AVPR1a receptor genes (130,131).
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New strategies such as gene-set analysis of OT-signaling
pathways in social behavior have yet to be implemented and
may help overcome issues of small effect sizes and multiple
testing, especially when larger data sets become available.

Conceptual Implications and Future Directions

Research on OT-pathway genes and human social functions
lends support to the three evolutionary-based principles out-
lined above. Consistent with deconstructing sociality, findings
demonstrate the involvement of OT in the special abilities that
define social life in our species and show that polymorphic
variations are sensitive to cultural contexts and rearing con-
ditions. The repurposing hypothesis is seen most robustly in
studies demonstrating OT’s role in the use of social relation-
ships to accomplish basic life functions, for instance, parent-
ing behavior and stress management or its lack thereof in
cases of psychopathology. Finally, consistent with our
behavior-based biobehavioral synchrony model (27,132),
which describes the coordination of behavior and biology
during social contact, findings indicate that OT binds members
into social units via neurocircuitry that integrates online signals
from organism and environment and between members of a
social group. Much further conceptual work is required to build
models that detail the involvement of OT in various social
processes as they are embedded in specific cultural ecologies
in health and pathology at the level of genetic variability and
epigenetic methylation and in relation to a range of peripheral
processes.

Finally, a critical next step requires better characterization
of the early environment. Most genetic effects are expressed
as gene by environment interactions rather than main effects
(133). Yet, most human research has utilized adults’ retro-
spective accounts of early caregiving, accounts often colored
by current state (134). Much human research is needed to
characterize early environments in greater detail, include
careful observations of parenting behavior, and employ pro-
spective longitudinal designs. Integrating information from
imaging, genetic, and neuroendocrine biomarkers, combined
with careful assessments of social behaviors and major efforts
in longitudinal follow-ups, are required to understand the
involvement of OT-pathway genes in underpinning the impor-
tant modules of social life in our species—the social functions
that make us human.
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