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a  b  s  t  r  a  c  t

Animal  studies  demonstrated  the  powerful  impact  of maternal-infant  social  contact  on  the
infant’s  physiological  systems,  yet  the  online  effects  of  social  interactions  on  the  human
infant’s  physiology  remain  poorly  understood.  Mothers  and  their  3-month  old  infants  were
observed during  face-to-face  interactions  while  cardiac  output  was  collected  from  mother
and child.  Micro-analysis  of  the  partners’  behavior  marked  episodes  of  gaze,  affect,  and  vocal
synchrony.  Time-series  analysis  showed  that  mother  and  infant  coordinate  heart  rhythms
within  lags  of less  than  1  s. Bootstrapping  analysis  indicated  that  the concordance  between
maternal  and  infant  biological  rhythms  increased  significantly  during  episodes  of  affect  and
vocal  synchrony  compared  to  non-synchronous  moments.  Humans,  like  other  mammals,
can impact  the physiological  processes  of  the  attachment  partner  through  the coordination
of visuo-affective  social  signals.

© 2011 Elsevier Inc. All rights reserved.

Parent–infant synchrony, a concept coined by the first researchers on parenting in social animals, describes the overar-
ching process that coordinates the exchanges of hormonal, behavioral, and physiological stimuli between parent and infant
during social contact, providing critical inputs for growth and development of the young (Rosenblatt, 1965; Schneirla, 1946;
Wheeler, 1928). Through early social contact, mammalian mothers adapt their physiological systems those of the infant’s and
this experience organizes infant growth (Schanberg, Ingledue, Lee, Hannun, & Bartolome, 2003), shapes brain structures that
modulate the stress response (Champagne, 2008), sets the biological clock (Hofer & Shair, 1982), and regulates heart rhythms
(Hofer, 1971). Synchrony is a time-bound experience marked by an early sensitive period. Maternal separation or variations
in maternal care during the post-birth period permanently alter systems that modulate stress or enable social adaptation
(Meaney, 2010), highlighting the need to understand the effects of social contact on the human infant’s physiology. Of special
interest is whether mother–infant interactions shape the infant’s physiology in a moment-to-moment fashion, a question
that may  be addressed by assessing the online coordination of maternal and infant’s heart rhythms during social contact.

Studies in mammals addressed two mechanisms by which mothers organize the infant’s physiology by means of social
contact. The first considers the mother’s physical presence and full bodily contact. Hofer (1995) demonstrated that the
maternal physical presence integrates a set of bio-behavioral provisions, such as maternal heart rhythms, body heat, odor,
or nursing, and each functions to regulate a specific system in the pup. The second mechanism involves the species-specific
set of maternal postpartum behaviors. For instance, maternal licking-and-grooming, a typical behavior of rat mothers in
the immediate post-birth period, was found to exert a lifelong impact on the infant’s stress response and the capacity to
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provide optimal parenting to the next generation (Champagne, 2008). Both mechanisms impact the organization of heart
rhythms in young mammals (Dettling, Schnell, Maier, Feldon, & Price, 2007; Hofer, 1971), pointing to the openness of the
autonomic system to maternal social influences. Yet, despite the importance of bio-behavioral synchrony to the infant’s
lifetime adaptation, the online coordination of physiological and behavioral stimuli between human mothers and their
infants during social contact received little attention. It is thus unclear whether bio-behavioral synchrony occurs in humans,
whether human synchrony requires physical contact as it does in other mammals, and whether social interactions contribute
to the online regulation of the infant’s heart rhythms.

Social interactions between human mothers and infants draw on their mammalian heritage yet are unique in several
aspects. Interactions between human mothers and infants often serve a purely social function that is not directed toward
feeding, care, or protection. Humans are also the only species where early social play revolves around the matching of socio-
affective facial signals. During the third month of life, infants begin to partake in face-to-face interactions that are marked
by synchrony of non-verbal cues, including mutual gazing, co-vocalizations, and the matching of affective expression (Stern,
1985; Tronick, 1989). Interaction synchrony plays an important role in the maturation of brain circuits that support social
engagement and the experience of synchrony within the sensitive period of 3–6 months contributes to cognitive, social,
and emotional growth (Feldman, 2007a; Johnson et al., 2005; Jaffe, Beebe, Feldstein, Crown, & Jasnow, 2001). Moreover,
interaction synchrony at 3 months provides the foundation for purely human achievements and predicts the development
of complex symbolic expression and the capacity for dialogical empathy across childhood and up to adolescence (Feldman,
2007b,c).

Face-to-face interactions are organized in a clear rhythmic structure. Episodes of social engagement are followed by
episodes of rest and sequences of specific behaviors are repeated throughout the interactive event (Cohn & Tronick, 1987;
Kaye & Fogel, 1980). Three main channels of nonverbal synchrony have been identified. Gaze synchrony (G), the matching of
social gaze between parent and child, sets the framework for social relatedness and contributes to cognitive growth (Kaye
& Fogel, 1980). Affect synchrony (A), the matching of affective expression, plays an important role in the development of
self-regulatory capacities (Cohn & Tronick, 1988). Finally, parents and infants often engage in “proto-conversations” and
these repetitive moments of vocal synchrony (V) serve as the building blocks of spoken language and promote attachment
security (Jaffe et al., 2001). Each of these forms of synchrony has shown to predict long-term outcome and is thought to
provide essential environmental inputs for physiological and social growth. One potential mechanism by which gaze, affect,
and vocal synchrony shape development may  be that these moments facilitate, singly or in combination, biological synchrony
between the mother and infant’s heart rhythms. Such biological synchrony may  support the infant’s autonomic maturation
by means of social contact.

Research has pointed to the links between interaction synchrony and maternal and infant’s cardiac vagal tone – the
respiratory component in heart rate variability (RSA). Following synchronous play infants showed a greater vagal-tone sup-
pression to the still-face, indicating that synchrony facilitates a more adaptive autonomic response to stress (Moore & Calkins,
2004), and similar findings were reported for mothers (Moore et al., 2009). Similarly, correlations were found between infant
recovery from the still-face and maternal and infant RSA (Ham & Tronick, 2006) and between mother’s and infant’s RSA and
interaction synchrony (Feldman, Singer, & Zagoory, 2010). Overall, it has been suggested that such fit between maternal and
infant physiology during social contact supports the development of infant physiological regulation through the entrainment
of biological rhythms (Feldman, 2006) and contributes to the consolidation of a unique bio-behavioral attachment between
mother and child, which provides the foundation for the infant’s physiological, social, and emotional growth (Carter et al.,
2005). However, these studies describe the overall associations between maternal and infant’s autonomic response and
relational behavior but do not address the second-by-second coordination of physiology and behavior between attachment
partners during social contact.

In light of the above, the present study had two goals. First, we  examined whether face-to-face interactions would lead
to biological synchrony between the mother’s and the infant’s heart rhythms. Second, we examined whether the three
forms of synchrony – gaze, affect, and vocal synchrony – function to increase the degree of biological synchrony between
maternal and infant’s heart rhythms. We  thus compared the degree of biological synchrony during synchronous episodes
to that observed during non-synchronous moments for each form of synchrony and for the rare moments in which all
three forms of synchrony occurred simultaneously. Our hypothesis was that mother–infant interaction synchrony provides
one mechanism by which the social context regulates the human infant’s physiology in an ongoing, moment-by-moment
manner.

1. Method

1.1. Participants

Forty 3-month old healthy infants (15 females, M = 13.92 weeks, SD = 1.15) and their mothers participated. Mothers were
recruited in two tertiary care hospitals on the 2nd post-birth day and were screened for anxiety and depression in the
postpartum and again at 3 months. Mothers were healthy, delivered a singleton term healthy baby, were above 21 years,
had at least high-school education, were married or cohabitating, and were of Israeli-Jewish ethnicity. Mothers’ age averaged
28.9 years (SD = 4.0) and they completed 14.6 (SD = 2.3) years of education.
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1.2. Procedure and measures

Mothers and infants visited a university laboratory during the morning hours when the infant was fed and rested.
Upon arrival, mothers signed an informed consent. Infant sat in an infant-seat mounted on a table and mother sat fac-
ing him/her. Both mother and infant were connected to ECG monitor-IBI logger. Approximately two  minutes were allowed
to get accustomed to the electrodes. Following, mothers were instructed to play freely with the infant for 3 min  and face-
to-face interactions were videotaped using two cameras placed on adjacent walls and a split-screen video mixer controlled
from an adjoined room.

ECG signals of mother and infant were simultaneously sampled during the interaction by a dual channel portable ECG
monitor-IBI logger system (12bit, 1000 samples/second/channel, 3992/6 – IBI BioLog© System, UFI, Morro Bay, CA). The
‘BioLog’ system was equipped with active signal-conditioning electrodes, attached to participants using three disposable
Ag–AgCl skin surface electrode patches.

Inter-Beat-Intervals (IBI) series were produced from ECG signals. IBI series were visually scanned for segments with
multiple outliers. The IBI series were linearly interpolated to form an evenly sampled time-series and a high-pass filter of
h > 0.05 Hz was  used. Consistent with Khattak et al. (2007),  the high-pass filter was performed through a subtraction of a
20-s running average from each data point. The first and last 10 s of the data were omitted to avoid artifacts due to the
removal of the average. Filtering at the electrode level allows for better signal-to-noise ratio and minimizes artifacts due to
movements. QRS complexes of the ECG signal were detected online using band check thresholding followed by “Descending
Train” peak detection algorithm. Discrete Inter-Beat-Intervals series (IBI, Ri − Ri−1 in ms)  were stored for off line processing.
Each IBI series was visually scanned by two researchers for outlier caused by artifacts or ectopic beats.

Maternal and infant’s behaviors were micro-coded on a computerized system (Noldus, The Wagginiggen, NL) for 3
categories of behavior: Gaze, Affect, and Vocalization. Each category included a set of mutually exclusive behaviors as
follows.

Parent codes: Parent gaze—this category assessed the direction of parent gaze and included the following codes: gaze
to infant’s face, gaze to object or environment, and gaze aversion – indicating that parent gazes away from the infant but
gaze is not focused on other objects or the environment. Parent affect—parent’s expressed affect was coded on the basis of
facial expressions, body tone, movements, and other non-verbal signals and included positive, neutral, and negative affective
expression. Parent vocalizations—the parent’s vocal output was  coded along four codes: “motherese” vocalizations – infant-
directed speech that is high-pitched and typically includes sing-song vocalizations; “typical” adult speech to the infant in a
normal range and regular rhythm; adult speech to other adult; and no speech.

Infant codes: Infant gaze—was coded similar to parent’s gaze along the following codes: gaze to parent, gaze to
object or environment, and gaze aversion. Infant affect—was similarly coded as positive, neutral, or negative. Infant
vocalizations—included positive vocalizations, such as positive babbling, cooing, or giggles, negative vocalizations, including
fussing and crying, and no vocalizations. Inter-rater reliability, computed for 10 interactions (25%), averaged 94%, kappa = .86
(range = .80–.98). Consistent with previous research (Feldman, 2007a),  three forms of synchrony were computed using con-
ditional probabilities: Gaze synchrony—the proportion of time mother and infant were in social gaze and looked at each other.
Affect synchrony—the proportion of time mother and infant matched their positive affect, and Vocal synchrony—proportion
of time mother and child emitted positive vocalizations simultaneously.

2. Results

2.1. First study question: time-series analysis of maternal and infant heart rhythms

Time-series analysis: following research on mother–infant interaction synchrony, synchrony between maternal and infant
heart rhythms was computed for each dyad using a time-domain time-series analysis (Cohn & Tronick, 1988; Gottman, 1981).
These time-series analysis computed the Cross Correlation Functions (CCFs) between the IBI series of each mother and infant
following ARIMA modeling. For each mother–infant CCF, the following statistical tests were used:

(A) A two-sided t-test of the R values of all mother–infant pairs versus a null hypothesis of an average 0 correlation. Note
that this is a conservative estimate, since we were interested to assess whether the correlation is positive and indicates
relations between maternal and infant heart rhythms.

(B) A t test of the R values of all mother–infant pairs versus a null hypothesis of an average 0 correlation, following an ARIMA
analysis of the mother–infant pairs. The ARIMA was performed using one autoregressive term and one moving average
term. No time-lag was used.

In order to demonstrate that the synchrony between mother and infant’s heart rhythms is significantly greater than
chance, we created a distribution from the cross-correlation coefficients that resulted from the CCF analysis of each
mother–infant pair and compared it to a distribution of coefficients that resulted from a similar CCF analysis of mothers
and random infants (i.e., other infants in the sample) in order to assess whether the distribution of mother–infant cross-
correlation coefficients was significantly greater than chance. The two distributions are presented in Fig. 1. The distribution
of cross-correlation coefficients from the mothers–infants CCF analysis (Fig. 1, dark line) was  positive and significantly
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Fig. 1. Histogram of mother–infant cross-correlation coefficients as compared to random mother–infant dyads. Coefficients of the cross-correlation function
(CCF)  derived from the time-series analysis of each mother–infant dyad after the autocorrelated component in each time-series was removed using ARIMA
modeling. The distribution of these coefficients (dark line) is skewed toward positive values. A similar distribution created from the cross-correlation
coefficients derived from the time-series analysis of random mother–infant dyads (gray line) is centered around zero, as expected. The two  distributions
are  significantly different (t < .01, one tail).

greater than chance (t = 4.92, p < .002). Furthermore, when comparing the two distributions a significant difference was
found (t = 3.84, p < .01).

Similar results were obtained after removing the autocorrelated component in each time series, using Autoregressive
Integrated Moving Average (ARIMA) models for each time-series (Gottman, 1981), with one autoregressive term and one
moving average term. Prior to computing these separate ARIMA models, the series were inspected for stationarity conditions
(i.e., consistency of mean and variance across the time-series). Following, the CCFs for each dyad were computed using the
two series of residuals from the ARIMA modeling with no time-lag in the analysis. These correlations coefficients indexed the
degree of synchrony between the two time-series above and beyond the internal rhythms in each partner’s heart rhythms.
The correlation coefficients were again positive on average and significantly different than 0 (t test score = 2.04, p < .05).
These findings demonstrate that the synchrony between mother and infant’s heart-rhythm is non-random, confirming our
first hypothesis.

Bootstrapping analysis: to address the second study question, a bootstrapping method was  used. For this end, the first
100 s of each mother’s IBIs were combined to produce a long time-series of 4000 s (100 × 40). This process was repeated
with the related infant’s IBI (each time-series contained over 10,000 IBI data points). The Pearson cross-correlation coeffi-
cient of the mother and her own infant’s combined time-series was .06 with an extremely high p value of less than 1e−10.
However, in order to achieve a more precise estimate of the significance of the results while controlling for the autocor-
related component in each time-series, the bootstrapping approach was  used. We compared the Pearson cross-correlation
coefficient of the combined time-series of the 40 mothers and related-infant pairs to the Pearson correlation coefficient
obtained from randomizing the order of the infant’s IBI time-series. Each randomized sequence was composed of 40 sec-
tions of 100 s of infant IBI. In the randomized sequences, each 100 s of mother IBI were compared to a similar chunk of a
infant IBI, but not her own infant (Fig. 2). The bootstrapping analysis provides a comparison between the cross-correlations
of the related-mother–infant-pairs and the cross-correlations of the 40 × 39 possible unrelated-mother–infant pairs. One
thousand randomized comparisons were performed and the Pearson cross-correlation coefficient was computed for each.
The significance of the bootstrapping algorithm is defined as the fraction of randomized time-series with a cross-correlation
higher than the 40 mother-own infant IBI time-series. The cross-correlation of the mother-own-infant pairs for each pair
was significantly higher than the cross-correlation between the mother–other–infant-pairs in the vast majority of random-
izations (p = .02) (Fig. 3). These findings further demonstrate the phenomenon of heart-rhythm synchrony between mother
and infant during social interaction is observed.

To further understand the bootstrapping results, we  examined whether the observed cross-correlations indeed stem
from IBI synchrony or from data artifacts. We  tested whether IBI acceleration/deceleration of the mother leads to IBI accel-
eration/deceleration of her infant and vice versa. To examine this, we  detected events of significant rise in the infant’s IBI
and checked whether the mother showed a parallel increase. To detect events of increased infant IBI, we computed all peaks
in the infant IBI time-series and defined these peaks as outliers. IBI outliers as defined as all events of infant IBI higher than
2 standard deviations (SDs) of the infant’s IBI average. The decision to use 2 SDs resulted from visual inspection of the IBI
time-series and intended to include the majority of peaks in the infant’s IBI (see Fig. 2 for example). For each such outlier
event (single time point), we measured the IBI pattern of both mother and infant starting 2 s before the outlier event and
ending 10 s after the outlier event. The 10-s interval was  chosen to enable a long enough period to include both a long rise
and a decrease of IBI. These time-segments of high outlier events were then averaged to produce an averaged time-series.



R. Feldman et al. / Infant Behavior & Development 34 (2011) 569– 577 573

Fig. 2. An example of the bootstrapping methodology. The bottom row represents the combined infants’ IBI time-series (first 100 s of each infant’s IBI)
for  three random infants used for demonstration (the actual analysis used all 40 mothers and infants in the same manner). The middle row represents
the  combined IBI time-series of their three mothers. The top row is similar to the middle row but the positions of the three mothers and three infants are
randomized. The cross-correlation between the lower and middle row represents the actual synchrony between the mothers’ and their own infants’ IBI,
whereas the correlations between the lower and upper row are used for the bootstrapping analysis. The dashed horizontal lines at the lower left corner
represent the cutoff used to detect outliers.

By definition, the averaged infant IBI segments initialized on the infant’s IBI high outlier event series shows a peak slightly
after time zero. However, if the mother and her own  infant’s IBI are synchronized, the same pattern would be expected to
appear in the averaged mother IBI segment initialized on own infant’s high outlier events. Averaging over a large number of
mother IBI random segments would produce a flat curve, whereas the only mechanism that can explain the rise observed in
Fig. 3 in the averaged IBI mother segments is that the segments are not random and that the two sets of outlier segments are
synchronized. The same procedure was repeated using the mother’s high IBI outlier events with similar results. Fig. 4 rep-
resents the averaged mother and infant’s IBI segments, initiated on the infant/mother high outlier events. As seen, mother’s
and infant’s IBIs peak nearly simultaneously. These findings demonstrate that the correlation observed in Fig. 3 is the direct
result of IBI synchrony, with a near-zero time-lag.

A similar analysis was performed for the low IBI outlier events, defined as IBI values lower than one-and-a-half SDs below
the average heart rate. We  similarly chose 1.5 SDs based on the visual inspection of the time-series. Similar to the high outlier
segments, a decrease in the infant’s/mother’s IBI resulted in a decrease in the mother’s/infant’s IBI at a near-zero time-lag
(Fig. 3). Note that the high and low outliers were defined differently, since the infant’s IBI curve is not symmetric (Fig. 2),
and the low part of the IBI curve is slightly flatter than the high part of the same curve and thus, a lower threshold was  used.

Results of both the time-domain time-series analysis and the bootstrapping analysis clearly demonstrate that the mother’s
and her own infant’s IBI are partially correlated. This heart rhythm correlation is the direct result of a near-zero-time-lag
heart- rhythm synchronization, in which an increases in the infant’s heart rhythm leads to an increase in the mother’s heart
rhythm, and a decrease in the infant’s heart rhythm leads to a decrease in the mother’s heart rhythm and vice versa.

Fig. 3. Results of the bootstrapping analysis comparing related-mother–infant-pairs IBI synchronization and unrelated-mother–infant-pairs IBI synchro-
nization. The black region represents the fraction of R values obtained from the bootstrapping analysis (unrelated-mother–infant-pairs) that is higher than
the  observed cross-correlation of the related-mother–infant-pairs analysis.
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Fig. 4. Results of the bootstrapping analysis showing synchrony in the acceleration and deceleration of mother and her infant’s IBI. Events of high infant
IBI  (>2 SDs of average IBI) were initialized on the mother’s high IBI events and vice versa. Parallel analysis was performed for the infant’s low IBI (<1.5 SDs
of  average IBI) synchronized on the mother’s low IBI events and vice versa. A peak in the mother’s IBI was accompanied by a peak in her infant’s IBI and
vice  versa.

2.2. Second study question: concordance in heart rhythms increases during episodes of interaction synchrony

The IBI synchronization of mother and her own infant was not consistent across the interaction: periods of high IBI
synchronization were surrounded by periods of non-synchronized IBIs. To address the second study question, we measured
the IBI synchronization during periods of interaction synchrony and checked the level of synchrony within these periods as
compared to the rest of the interaction. The proportions of time dyads spent in each form of synchrony appear in Table 1.
The cross-correlation coefficients during the synchronized episodes were again computed by combining all episodes of a
specific form of synchrony (G, A, V, and their combinations) into a single sequence and computing the cross-correlation
between the mother’s and her own infant’s IBIs during these episodes as compared to the rest of the interaction.

All mother-own infant synchronized episodes had positive correlations at extremely low p values (p < 1e−10). However,
to further specify the meaning of these results, a similar bootstrapping method was  used. The synchronous episodes were
compared to similar episodes from the randomized time-series. For instance, if a certain form of synchrony lasted 20,
35, and 15 s scattered over the entire interaction, similar periods with a similar scatter were used from the randomized
sequence to perform the bootstrapping analysis. The cross-correlation coefficients from the bootstrapping analysis and
their significance levels are presented in Table 1. These results indicate that two forms of synchrony were most effective
in increasing IBI synchrony: vocal synchrony (V) and affect synchrony (A). During periods of vocal or affect synchrony IBI
synchrony increased significantly as compared to the rest of the interaction. As seen, IBI synchrony further increased when
affect and vocal synchrony co-occurred (note that we  did not check p values below 0.001, since only 1000 bootstrapping
comparisons were performed). In contrast, gaze synchrony (G) in of itself did not increase IBI synchrony. These results
support our second hypothesis and show that during moments of vocal and affect synchrony, the synchrony between the
mother’s and her infant’s heart rhythms increases significantly.

3. Discussion

Results of the present study demonstrate that human mothers and infants engage in a process of bio-behavioral synchrony
as it was initially defined in other mammals – the regulation of infant physiology by means of social contact. During face-
to-face interactions mothers adapt their heart rhythms to those of their infant’s and infants, in turn, adapt their rhythms to
those of the mother’s within lags of less than 1 s, forming biological synchrony in the acceleration and deceleration of heart
rate. Not only were biological rhythms coordinated, they were matched online with the degree of interactive synchrony in

Table 1
Proportions of time dyads engaged in each form of synchrony and the cross-correlation coefficient between related-mother–infant-pairs IBIs during
synchronous compared to non-synchronous episodes.

M SD R p

Gaze synchrony (G) .85 .33 .029 .109
Affect  synchrony (A) .42 .35 .090 .004
Vocal  synchrony (V) .13 .11 .096 .001
Gaze  and affect synchrony (GA) .36 .32 .036 .086
Gaze  and vocal synchrony (GV) .10 .13 .083 .041
Affect  and vocal synchrony (AV) .07 .12 .142 <.000
Affect,  vocal and gaze synchrony (AVG) .06 .11 .09 .069

Note: p represent the cross-correlation probability of accepting the NULL hypothesis (no correlation) obtained from bootstrapping analysis.
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the vocal and affective modalities. During episodes of synchrony between the partners’ social cues, the degree of biological
concordance between their heart rhythms increased accordingly. These findings suggest the online coordination between
the physiological and social processes of separate individuals within an attachment relationship.

Although the findings point to continuity between humans and other mammals, important species differences are also
noted. In order for the physiological processes of one human being to impact those of the attachment partner’s, neither of the
aforementioned mammalian mechanisms of synchrony were required – physical proximity that involves full bodily contact
(Hofer, 1995) or maternal behavior consisting mainly of tactile stimulation (Meaney, 2010). Mothers and infants were not
situated in a position of physical contact and touched each other rarely and thus, another mechanism was  at work here that
did not build on physical touch and was sensitive to finely tuned moment-by-moment alterations in communicative intent.
Possibly, the human capacity to impact the physiological processes of the attachment partner’s through the coordination of
facial and vocal signals represents abilities that distinguish humans from other mammals, lie at the core of human attachment,
and provide the collaborative basis for the formation of human societies (Moll & Tomasello, 2007). Infants are initiated into
this bio-behavioral exchange as soon as they enter the social world and begin to engage in face-to-face interactions. Such
experiences may  provide critical inputs for the child’s ultimate physical growth, social adaptation, and – similar to other
mammals – the ability to form optimal attachment in the next generation.

What may  be the mechanisms through which biological synchrony promotes infant development? One possibility is
that, similar to the findings for other mammals (Hofer, 1995), such physiological synchrony functions to entrain the infant’s
biological rhythms, thereby providing an external regulation to the consolidation of cyclic physiological processes occur-
ring in milliseconds (e.g., hearth rhythms), days (e.g., circadian rhythms), or seasons (e.g., seasonal hormonal release).
More optimal organization of such biological rhythms in the first months of life has shown to predict the development
of self-regulatory and interactive capacities across the first years of life (Feldman, 2006, 2009). The second mechanism
may  relate to the formation of a specific bio-behavioral attachment bond between mother and infant, which is supported
by a unique fit between the partners’ physiology and behavior (Barrett & Fleming, 2011). Such dyad-specific attach-
ment that coordinates biological and social processes forms what Bowlby (1969) has termed as an “Internal Working
Model” and provides the basis for the infant’s physical and social growth and the capacity to engage in future attachment
relationships.

The repetitive-rhythmic experience of human synchrony has been likened to the learning of a birdsong in terms of its
implications for infant growth and social adaptation (Williams, 2004). The learning of a birdsong involves a finely tuned
interplay between specific brain structures, neuro-chemical systems, epigenetic influences, imitative learning, and error
detection, all within a very narrow time-window, else the structural changes that enable song production are disrupted
and the bird’s fittedness into the pack may  be impaired (Jarvis, 2004). Songbirds learn with remarkable precision the tonal,
rhythmic, and structural characteristics of their species’ song, similar to the human infant’s impressive capacity to perceive
the rhythmic and affective features of its mother’s interactive style (Margliash, 2002). While the songbird’s model provide
useful insights for the human infant’s ultimate adaptation, the findings also underscore the uniqueness of the face-to-face
exchange and the flexibility it offers for the infant’s social engagement. Unlike birds, human infants can impact in real
time both the behavioral parameters of the social process and their biological underpinnings. Such mutually adaptive bio-
behavioral process affords infants a relational experience that does not follow a predetermined pattern of the species but is
co-created in the present moment from the contributions of mother and child.

Face-to-face exchanges are short events spread across the daily routine of parent and child that mark purely social
moments and involve higher levels of positive arousal and social coordination as compared to episodes of caregiving or
feeding. The brevity and intensity of such moments appear to initiate a process of biological concordance between the part-
ners’ heart rhythms. As seen, during episodes of high positive arousal – for instance, moments of vocal or affective synchrony
which are accompanied by high positive energy – the tightness of this biological synchrony increased. The data indeed show
that gaze synchrony in of itself, defining moments of social attunement without a rise in positive arousal, did not increase
biological synchrony. Possibly, the early experience of such intense moments within attachment relationships sets the pos-
sibility that close relationships, throughout the lifespan, may  integrate the individual’s affective state and physiological
systems into an interpersonal event that affords the online coordination of physiological and social processes between two
individuals within an attachment bond.

The data analytic approach employed here combined two methods for analyzing the temporal coordination between two
series of events to demonstrate the phenomenon of heart-rhythm concordance. Time-domain time-series analysis has been
the typical approach in research on interaction synchrony (Cohn & Tronick, 1988; Feldman, 2007a, 2007b, 2007c; Feldman,
Greenbaum, & Yirmiya, 1999; Field, Healy, Goldstein, & Guthertz, 1990; Gottman, 1981; Jaffe et al., 2001). Bootstrapping
analysis has similarly been used to study the coordination of non-verbal patterns during social interaction in infants (Yale,
Messinger, Cobo-Lewis, & Delgado, 2003), the coordination of emotional behavior between adults during psychotherapy
(Pascual-Leone, 2009), and the associations between the behaviors of social partners in adolescence (Zimmer-Gembeck,
Chipuer, Hanisch, Creed, & McGregor, 2006). Bootstrapping methods have been particularly useful in analyzing heart-rate
data and are especially suited for handling cardiac output that includes high level of noise (Couderc, Xiaojuan, Zareba, & Moss,
2005; Wasserman & Bockenholt, 1989). The present study is the first, to our knowledge, to combine the two  approaches in
a single study.

Future research is required to examine the impact of interaction synchrony on other physiological processes,
such as hormonal release or brain activation, and assess high-risk conditions, for instance, postpartum depres-
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sion or premature birth, that may  interfere with the formation of bio-behavioral synchrony. Research in humans
should follow animal models in detecting specific genetic markers, epigenetic effects, and brain systems implicated
in the online coordination of biological and relational processes by means of social contact beginning with the
infant’s first interactions with the mother and continuing with the individual’s attachment relationships throughout
life.
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