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Abstract

The recent decade has seen a shift from artificial and environmentally deprived experiments in neuroscience to real-life
studies on multiple brains in interaction, coordination and synchrony. In these new interpersonal synchrony experiments,
there has been a growing trend to employ naturalistic social interactions to evaluate mechanisms underlying synchronous
neuronal communication. Here, we emphasize the importance of integrating the assessment of neural synchrony with
measurement of nonverbal behavioral synchrony as expressed in various social contexts: relaxed social interactions,
planning a joint pleasurable activity, conflict discussion, invocation of trauma, or support giving and assess the integration
of neural and behavioral synchrony across developmental stages and psychopathological conditions. We also showcase the
advantages of magnetoencephalography neuroimaging as a promising tool for studying interactive neural synchrony and
consider the challenge of ecological validity at the expense of experimental rigor. We review recent evidence of rhythmic
information flow between brains in interaction and conclude with addressing state-of-the-art developments that may
contribute to advance research on brain-to-brain coordination to the next level.
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Toward a real-life interactive neuroscience

A fundamental feature of human life is the ‘hypersociality’
of our species, the innate need and exquisite capacity for
social collaboration, group living, affiliation and cooperation
that have led Homo sapiens to coordinate action toward a joint
goal and construct complicated communicative signal systems,
which, according to some authors, are the main reasons for the
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survival and thriving of our species (Dunbar, 1998; Wilson,
2012). A central mechanism underpinning human sociality is
biobehavioral synchrony, the human capacity to coordinate
physiological processes between interactive partners during
moments of social contact, including the coordination of
heart rhythms, hormonal release, neural oscillations and brain
activations (Feldman, 2012, 2016, 2017; Levy et al., 2017). A key
tenet of the biobehavioral synchrony model is that physiological
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coordination is triggered in a bottom-up way and depends on
the coordination of social action, such as motor activity, facial
mimicking or the synchrony of nonverbal interactive signals,
including shared gaze, joint laugh or mutual expression of
positive affect and that such behavioral synchrony provides
the template for the synchrony of neural processes (Feldman,
2017). The model maintains that the synchrony of neural
and behavioral process is a key feature of the mother–infant
bonding context in mammals, where the mature maternal brain
externally regulates the infant’s immature brain and tunes it
to social living. These early attachment experiences are then
transferred to other social affiliations throughout life, such as
romantic relationships or close friendships, and both animal
(Numan and Young, 2016) and human studies (Feldman, 2016)
have shown that parental and pair bonding utilize similar
neural, endocrine, molecular and behavioral processes. These
early attachment experiences also prepare the brain to life
within social groups and enable the individual to synchronize
both physiology and social action with unfamiliar strangers.
As such, the parent–child attachment context, as well as other
affiliative bonds, may serve as a good vantage point for research
on human sociality, particularly the integration of social and
neural synchrony during moments of social contact. Such
research requires new, ecologically valid paradigms to capture
the richness of human social life within its natural ecology. In
the following section, we address the study of interpersonal
neural synchrony. We outline the progress from single person
to multiperson neuroscience, the technological advances that
afforded this transition, and the methodological challenges that
phase this new area of research.

Over the past five years there has been an exponential boom
in neuroscientific studies of interpersonal social interaction
(Redcay and Schilbach, 2019). Initially, to unveil the underlying
mechanism of social interaction, studies investigated the neural
correlates related to artificial social stimuli. Although these
studies applied decontextualized experimental environments,
there has been a steady move from well-controlled socially
deprived experiments to naturalistic and socially dynamic
stimuli (Hari et al., 2015). Yet, even such dynamic stimuli were
studied in the context of isolated brains, thereby neglecting
the valuable information of the dynamic interaction among
multiple brains. This aspect was particularly missing because
in real life, human societies rely on complex and large-scale
social interactions among multiple individuals. During our daily
life we constantly receive information from social partners and
must simultaneously respond, update predictions and monitor
actions in dynamic and multifaceted ways according to person,
place and the task at hand.

In parallel, recent technological developments in portable
devices enabled a paradigm shift toward a nonreductionist,
multibrain approach to social interactions. Hyperscanning,
the simultaneous data collection from two or more brains
(Figure 1, upper right panel), was the term originally coined
to multibrain neuroimaging, and since its first appearance
(Montague et al., 2002) there has been a steady rise in the
number of studies set to investigate the neural mechanisms that
underpin the interactions among multiple brains in a variety of
social tasks and interactive settings. The early hyperscanning
studies typically addressed slow-paced social interactions, such
as movement imitation of hand movement (Dumas et al., 2010).
These studies targeted real social interactions, but tended to
tap reactive, rather than interactive processes (Hari et al., 2015).
Yet, owing to recent advances in neuroimaging technologies,
we are currently witnessing a surge in studies that tackle the

real-life dynamics of social interactions and employ quick
and naturalistic experimental designs (Shamay-tsoory and
Mendelsohn, 2019). A major emphasis in this paradigm shift was
the ecological validity of these studies that aimed to capture how
brains function ‘in the wild’ (Sonkusare et al., 2019). For instance,
experiments tested dyadic social conversation (Kinreich et al.,
2017), humming (Osaka et al., 2014), guitar playing (Müller et al.,
2013), empathic touch (Goldstein et al., 2018) or classroom
student learning (Dikker et al., 2017). Overall, these studies
demonstrated that during coordinated joint actions there is
enhanced neural synchrony, confirming the prediction of our
biobehavioral model on the bottom-up, behavior-based nature
of brain-to-brain synchrony (Feldman, 2016, 2017).

Despite the temptation to ascribe the putative mechanism
of neural synchrony to various interpersonal interactions, it is
important to reflect upon the phenomenon of neural synchrony.
It is still unclear whether neural synchrony always implies inter-
personal communication, that is, dyadic (or intragroup) neu-
ral information flow among individuals. According to Burgess,
synchrony does not necessarily imply reciprocal information
exchange (Burgess, 2013). Rather, the synchrony of any physical
system may, for instance, be induced by a common external
driver, such as the perception of an identical external stimulus
and in such cases, synchronization may occur despite the lack
of interpersonal communication. Alternatively, synchrony may
be driven by one of the agents in the dyad but without reci-
procity. Another type of synchrony may occur by coincidence;
for example, between two brains that are in separate physical
locations, both operating in a similar frequency band and it
is likely that these two brains will operate synchronously for
at least a limited period of time. This means that given the
intrinsic properties of the human brain, neural synchrony can
be observed despite the lack of any interbrain communication.
Moreover, spurious measures of neural synchrony can also result
from cardiac or respiratory synchrony (Müller and Lindenberger,
2011), thereby misleading interpretations of the data. As such, it
is important not only to apply great caution in the interpretation
of interbrain findings but also to complement research on neural
coordination with careful observations of behavioral synchrony.

The application of specific analysis schemes, for example,
circular correlation (Burgess, 2013) is thought to be more sensi-
tive to the detection of reciprocal information exchange, and less
prone to measuring spurious correlations. This taps into another
issue related to the evaluation of neural synchrony. To date, most
approaches rely on correlation metrics originally developed for
within-brain connectivity analyses, for instance, coherence or
phase synchrony (Lachaux et al., 1999). However, real-life inter-
actions involve more complex dependencies between brain sig-
nals, such as variance in signal time-lags and varying direc-
tionality between the dyadic signals (Hari et al., 2015). Hence,
nonlinear correlations (Campi et al., 2013), multivariate methods
(as will be elaborated later in this article) and other computa-
tional alternatives are important to develop and implement for
improving the accuracy of estimating neural synchrony.

In light of these considerations, it is crucial to be cautious
when observing neural synchrony and to take specific exper-
imental and analytical measures in order to avoid erroneous
interpretation of hyperscanning data. In addition to the analyt-
ical improvements mentioned above, several other recommen-
dations may help against misinterpretation of neural synchrony
data, including the use of several experimental controls and
reference measures (Goldstein et al., 2018), the combination of
naturalistic and controlled settings (Leong et al., 2017) and the
integration of neural synchrony with rich and real-life indices of
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Fig. 1. The integration of socio-behavioral and neural synchrony approach. An example of a longitudinal study integrating socio-behavioral interaction (left and middle

panels) together with paradigms measuring interbrain synchrony: the simultaneous approach (right upper panel) favors ecological validity whereas a sequential

approach in magnetoencephalography (right upper panel) achieves a balance between ecological validity and experimental rigor.

synchronous behavior (Kinreich et al., 2017). In the next two sec-
tions, we address the last two points, respectively. Although cap-
turing true neural synchrony remains a grand challenge in the
field, it is recommended that several other methodological steps,
neuroimaging approaches (e.g. magnetoencephalography) and
conceptual discussions should be implemented by researchers
to improve the chances of reporting true neural synchrony in
interpersonal studies.

The trade-off between ecological validity and
experimental control
Another aspect in hyperscanning studies that requires careful
consideration is the trade-off between ecological validity and
experimental rigor. Such risk may be intrinsically embedded
in the framework of ‘ecological validity’, notwithstanding the
great potential that ecologically valid experiments hold. First,
social interaction is a multifaceted phenomenon, which is dif-
ficult to be distilled as a single process, and hence may be
process-unspecific (Wheatley et al., 2019). Second, under natural
interactional settings, humans perform various forms of bodily
movements that are accompanied not only by sensorimotor
activity, but also by non-neural noisy activity. Obviously, our
stand is that research should not abandon real-life hyperscan-
ning for the sake of experimental control. We certainly need to
study real-life social interactions while bearing in mind that the
natural context of this approach is multimodal, interactive and
not as well-controlled or specific. For instance, multimodality
is enhanced during social interactions because of the differ-
ent behavioral and expression channels (e.g. body, face and
eyes), by which interaction is conveyed (Wheatley et al., 2019).
Similarly, the interactive context should be taken into account
given the fast, moment-by-moment variability occurring during
social interaction (Levy et al., 2017); hence, applying a time-
resolved approach while coding and analyzing social interac-
tions is needed, which, while enriching our understanding the
neural basis of social interactions adds to the complexity of
interpreting real-life interactional data.

This new challenge to find an efficient trade-off between
ecological validity and experimental rigor pushes social neu-
roscientists to propose creative approaches. One approach that
respects the need for such balance is sequential dual-brain imag-
ing (Schippers et al., 2010), which allows to artificially study infor-
mation transfer between social partners. These studies often
image the two individuals in separate scanning sessions, thereby
simulating social interaction. For instance, in a recent study,
Leong et al. (2017) investigated neural communication between
adults and infants during moments of social gaze. They pro-
posed an inventive way to do so by first imaging the adult brain
singing (and videotaping this session) and then showing the
video of the adult singing to the infants while imaging their
brains. Such sequential settings are tightly controlled and allow
to mechanistically test cognitive processes underlying social
interaction. Nevertheless, sequential dual-brain scans offer an
artificial simulation of the actual neural mechanisms underly-
ing social interaction. We support the methodological approach
advocating that good science should combine both sequential
(i.e. rigorous approach) and simultaneous (i.e. realistic approach)
brain scanning (Cantlon, 2020) to offer valuable insight into
the dual working of brains in interaction. Yet, implementing
both controlled and real-life settings in a single study is not
always possible; in contrast to semipassive interactions (e.g. gaze
and rhyming) (Leong et al., 2017), it is difficult to implement
controlled, sequential scanning during active social interactions.
In the second part of this manuscript, we elaborate on the use of
magnetoencephalography (MEG) for obtaining a good trade-off
between ecological validity and experimental control.

Integrating behavioral and neural synchrony
To investigate neural synchrony, most studies relied on con-
trasting two experimental conditions/groups (Hu et al., 2017;
Pérez et al., 2017; Goldstein et al., 2018). For instance, Hu et al.
(2017) studied interbrain synchrony by contrasting two experi-
mental groups: participants who performed a coordination task
vs participants who performed an independence task. In more
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recent studies, however, the coding of nonverbal social behav-
ior was incorporated to supplement and fine-tune the mech-
anisms of neural synchrony, consistent with the theoretical
propositions of the biobehavioral synchrony model proposing
that social action provides a template for neural coordination.
For example, body-movement synchrony (Galbusera et al., 2019)
was behaviorally coded to study emotion regulation, or tap-
ping/drumming synchrony was coded and correlated to neu-
ral synchrony (Dai et al., 2018; Rojiani et al., 2018). To better
understand the neural determinants of social communication
via eye-to-eye contact, Hirsch et al. (2017) used eye-tracking
and functional near-infrared spectroscopy (fNIRS) neuroimag-
ing. They analyzed neural coordination during joint eye-gaze,
and inspected within- and across-brain neural correlates of
eye-to-eye contact; they found a network that mediates neu-
ral responses during eye-to-eye contact between dyads. Simi-
larly, Leong et al. (2017) manipulated gaze and coded partici-
pants’ vocalizations during gaze episodes. They found that direct
gaze strengthens interpersonal neural communication—a pat-
tern replicated in two experiments: one more controlled and
the other more ecologically valid. To measure the influence of
attention on neural synchrony, Wass et al. (2018) manually coded
visual attentional patterns of parents and infants by reviewing
their respective video recordings on a frame-by-frame basis.
The authors found that parents’ neural oscillatory power closely
tracked and responded to changes in their infants’ attention.
Moreover, several studies tested higher order social processes,
such as cooperation and attachment. Numerous studies set
to understand the association between neural synchrony and
overall behavioral cooperation, collected third-person rating (Lu
and Hao, 2019) or computed scores from computer tasks (Mu
et al., 2017; Reindl et al., 2018; Miller et al., 2019) and proposed
neural determinants of interpersonal behavioral cooperation.
Authors also measured the perception of attachment cues, and
found that it allocates considerable neural resources by eliciting
a strong neural oscillatory response and the strength of the
neural response was associated with the degree of reciprocity in
the attachment relationship (Pratt et al., 2018). Others compared
different attachment styles during interactions to relate it to
patterns of neural synchrony (Miller et al., 2019).

It is important to note, however, that attempting to locate
a common neural denominator underlying interactional hyper-
scanning studies remains challenging at this stage. Several stud-
ies reported the recruitment of the temporal cortex (Hirsch
et al., 2017; Kinreich et al., 2017; Rojiani et al., 2018); however,
it appears that many more studies reported that interpersonal
neural synchrony recruits the prefrontal cortex (Babiloni et al.,
2012; Konvalinka et al., 2014; Hirsch et al., 2017; Hu et al., 2017;
Dai et al., 2018; Reindl et al., 2018; Lu and Hao, 2019; Miller et al.,
2019; Piazza et al., 2020). Likewise, oscillatory activity has been
quite multirhythmic, although gamma (Kinreich et al., 2017; Levy
et al., 2017; Mu et al., 2017; Pratt et al., 2018) and particularly
alpha (Dumas et al., 2010; Babiloni et al., 2012; Kawasaki et al.,
2013; Konvalinka et al., 2014; Leong et al., 2017; Pérez et al., 2017;
Goldstein et al., 2018; Pratt et al., 2018; Wass et al., 2018) rhythms
have been reported to synchronize in these hyperscanning stud-
ies. Overall, it appears that several neural mechanisms underlie
interpersonal neural synchrony, and common findings pinpoint
alpha activity in prefrontal regions, alpha activity in central
regions and gamma activity in temporal regions (Kinreich et al.,
2017). Yet, the richness and heterogeneity of current experi-
mental designs, methodology and scope of research render it
premature to infer a common neural network and describe neu-
ral mechanisms that underpin interpersonal neural synchrony.

Yet, this line of work advances insight and progress toward a
clear definition of the elemental neural mechanisms underlying
various modes of interpersonal expression and communication.

Our own work, based on the biobehavioral synchrony model,
proposes that neural synchrony is triggered by nonverbal
behavioral synchrony and that neural and behavioral synchrony
are mutually influencing and their interplay follows two types
of mechanisms: enhancement and complementarity (Djalovski
et al., 2020, submitted for publication). We further suggest
that the integration of social and neural synchrony may be
differentially expressed in various social contexts, whether
these are multiple one-on-one contexts, such as relaxed social
interaction, conflict, planning a joint pleasurable activity, or
when partners provide empathic support to each other’s daily
hassles, or larger group contexts when groups are involved
in various joint activities. In addition, we postulate that the
interplay of behavioral and neural synchrony depends on the
nature of the relationship between the interacting partners,
for instance, among couples, close friends, parent–child dyads,
acquaintances or complete strangers. Similarly, in studies of
intergroup neural synchrony, the degree of neural coordination
would vary according to the amount of training for motor/social
synchrony, for instance, in combat units or sports teams, on
the degree of familiarity, e.g. classroom students, or, in the case
of strangers, on whether or not the group shares a common
cause (e.g. a political rally) (Feldman, 2020) In a study testing
the impact of combat training on social perception, we coded
behavioral synchrony of social vignettes involving group activity,
for instance, an army unit in joint synchronous activity or
a group of friends socially drinking together around a table,
and measured the neural oscillatory response each stimuli
evoked in two groups; war veterans who have been in a life-
threatening battle and nonveterans controls. Participants were
imaged twice, once after intranasal administration of oxytocin
and once under placebo. We found that salient experiences
in social groups (i.e. combat veterans) shape social perception
and the neural oscillations that underlie it: oxytocin, a central
social neuropeptide, selectively modulated brain response to
social synchrony in the mirror-neurons network (pSTS, IPL and
IFG). The two functions of oxytocin, that is, as enhancer or as
anxiolytic, were highly dependent on salient experiences within
social groups (Levy, Goldstein, Zagoory-Sharon, et al., 2016b).
This study further strengthens the proposal that synchrony is
a complex phenomenon involving behavioral, social, hormonal
and neural determinants, particularly alpha rhythmic activity
in the frontal and temporal cortices consistent with some of the
aforementioned studies.

Using a longitudinal approach (Figure 1) for integrating
behavioral and neural indices of synchrony and for under-
standing the brain basis of empathy is a new strategy that we
recently implemented in several studies. In one such study, we
reported that indices of behavioral synchrony and emotions
drive future synchrony between two brains during social
interactions (Levy et al., 2017) in gamma rhythmic activity in the
temporal cortex, consistent with some of the aforementioned
research. In another longitudinal study, mother–child behavioral
synchrony was monitored throughout childhood. A decade late,
we assessed the neural empathic response and found that it was
predicted by the degree of behavioral synchrony between mother
and child experienced across the first decade of life (Levy,
Yirmiya, et al., 2019b; Levy, Goldstein, et al., 2019a). Likewise, we
found that trauma exposure reduced connectivity of the default
mode network in mother and child, impacting theta connectivity
in children and alpha connectivity in mothers, and that the
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degree of disruption to default mode network connectivity was
longitudinally linked to reduced behavioral synchrony across
the first decade (Zeev-Wolf et al., 2018). Processes of neural and
behavioral synchrony are not solely confined to dyadic settings.
In another study on the impact of intergroup conflict on neural
synchrony, we investigated neural synchrony within an ethnic
group of Jewish–Israeli adolescents, and within an ethnic group
of Arab–Palestinian adolescents. These adolescents participated
in an MEG experiment that probed the neural empathic response
to ingroup and outgroup targets. We found that nonverbal
empathic behavior strongly correlated with neural synchrony
within one ethnic group (i.e. Arab–Palestinians), but not with
another (i.e. Jewish–Israeli) (Levy, Goldstein, Influs, et al., 2016a).
This ethnic driving influence was suggested to stem from
ethnocentricity and minority mentality of the first group. In
another intergroup conflict study, it was found that exogenous
oxytocin administration enhanced within-group behavioral
coordination (Zhang et al., 2019). In an fNIRS study, authors
measured neural synchrony in groups of three and found that
synchrony was enhanced between leaders and followers as
compared to among followers, thereby suggesting a neural
synchronous mechanism underpinning communication of
leaders (Jiang et al., 2015). Another group study implementing
naturalistic hyperscanning electroencephalographic (EEG)
recording inside the classroom (Dikker et al., 2017) found a direct
link between neural group synchrony and social behavior (e.g.
engagement and dynamics).

Studying neural and behavioral synchrony within-group set-
tings can therefore investigate more complex social dynam-
ics and processes as shown here, for instance, intergroup con-
flicts, group emotions, leader-group relations or group learning.
Despite these interesting aspects, to date there have been only
few studies integrating neural and behavioral synchrony within-
group settings, perhaps due to the complexity of signal interpre-
tation, but also possibly stemming from the ‘many minds prob-
lem’, which is particularly prominent during group conversation
(Cooney et al., 2020). It therefore remains a methodological chal-
lenge to complement the shift from single- to two-person neu-
roscience, and to further advance to group neuroscience. Alto-
gether, accumulating data suggest that the integration of behav-
ior with neural synchrony is promising for elucidating social
phenomena. Altogether these studies advance our understand-
ing of behavioral and neural synchrony in complex dyadic or
group settings, for instance, by informing political decision mak-
ers, intergroup intervention builders or education policies. These
studies also have important implications to psychopathology
and high-risk populations, by proposing recommendations for
psychological and psychiatric venues of clinical therapy and
social support for dyadic relationship and child caregiving.

In several studies we examined using MEG the neural oscil-
latory response in children while being exposed to videos of
their own mother–child interactions compared to unfamiliar
mother–child pairs. We used interaction from the children’s
early childhood filmed in their home environment for ecological
validity and to invoke a keener sense of attachment reminders.
In the first study, we found that own mother–child interac-
tion elicited a widespread neural response across temporal and
insular cortices, including the insula, STS/STG, and Fusiform
Gyrus, as well as the visual cortex. Furthermore, response to
attachment cues integrated multiple rhythms, including alpha,
beta and gamma, underscoring the significant neural resources
the brain allocates to attachment cues, which are so critical
for survival (Pratt et al., 2018). We have previously found in a
study of children, adolescents and adults, that the integration

of multiple oscillatory rhythms in the social brain is a marker
of maturity (Levy et al., 2018), and, thus, the multirhythmic
response to attachment cues suggest that attachment stimuli
elicit and integrated response that fosters the maturation of the
social brain. It is noteworthy that these studies, which indirectly
involve interactional neural synchrony, also report alpha and
gamma rhythmic activity in the temporal cortex, similarly to the
hyperscanning studies reviewed above.

Finally, in a similar study that exposed preadolescents who
were reared by chronically depressed mothers across the first
years of life, vs healthy controls, we found that children of
depressed mothers, particularly those who later developed
affective disorders, showed diminished neural response in beta
and gamma rhythms to attachment cues and no differentiation
between neural response to own vs unfamiliar interaction,
indicating no neural exclusivity of the attachment target. For
all children, the degree of gamma responsivity to attachment
cues was predicted by the level of mother–child behavioral
synchrony in early childhood, further supporting the role of
synchronous interactions in tuning the brain to social stimuli
(Pratt et al., 2019), and in line with the gamma rhythmic
activity in the temporal cortex as reviewed above in several
hyperscanning studies. Several ongoing studies in our lab use
hyperscanning EEG to examine the integration of behavioral
and neural synchrony online during social interactions between
affiliated partners, such as mothers and children, mothers and
adolescents, romantic couples and close friends.

In one study, we measured synchrony between romantic
partners in a stable relationship, compared to a male–female
stranger couples, during a novel and positive social task, plan-
ning a fun day to spend together that will be ‘the best day
ever’. Romantic couples showed greater synchrony compared to
strangers and the difference was observed in gamma rhythms
in temporal regions, consistent with the MEG findings between
mothers and children and highlighting temporal gamma as a
potential mechanism of brain-to-brain synchrony. Furthermore,
we found that moments of neural synchrony were anchored in
episodes of behavioral synchrony; when partners synchronized
their gaze or positive affect, neural synchrony was observed,
but synchrony was not significant above baseline when part-
ners did not coordinate social behavior (Kinreich et al., 2017).
These findings provide evidence to our hypothesis indicating
that moments of nonverbal synchrony, which are engraved in
the brain during early sensitive periods within attachment con-
texts, function as the foundation upon which individuals can
coordinate their brain response online during social interac-
tions within other affiliations (Feldman, 2015). We will examine
in the upcoming section how this approach can be efficiently
implemented using MEG.

MEG technology as a promising tool
for studying interactional neural synchrony
One neuroimaging device that may mitigate the trade-off
between ecological validity and experimental control is MEG.
MEG records the magnetic fields generated by the electrical
activity of neuronal populations. A key advantage of MEG over
other techniques is that it can record brain activity directly and
noninvasively, while bypassing the problems commonly caused
by intermediate processes: neurovascular coupling in functional
magnetic resonance imaging (fMRI) or fNIRS, and scalp-based
signal distortion in EEG (Baillet, 2017; Gross, 2019). Aside the
general uniqueness of MEG as a neuroimaging tool, we contend
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that it involves special utility in interactive neural synchrony
studies for two main reasons: (i) employing indirect approaches
while maintaining controlled settings and (ii) temporal precision
and rhythmic activity sustaining social interaction. We will
expand on these points in this subsection.

There are few MEG systems in the world, making it chal-
lenging to conduct hyperscanning MEG. One of the only studies
that enabled such endeavor during dyadic interaction was con-
ducted in Japan (Hirata et al., 2014), while other studies achieved
hyperscanning between two cross-site MEG systems (Baess et al.,
2012; Remes et al., 2013; Zhdanov et al., 2015). Notwithstanding
the innovation, rich neural information and experimental rigor
applied in these pioneering studies, they were quite poor in eco-
logical validity. In fact, this brings up an inherent, current prob-
lem in most existing MEG systems participants are constrained
to remain physically immobile in a magnetically shielded room,
thus poorly emulating real-life interaction. Is there a better way
to exploit the unique neural information recorded in MEG dur-
ing social interaction, while at the same time, probing real-life
interaction?

Recently we highlighted an approach that attempted at
such integration (Levy et al., 2017) by studying the perception
of social interaction (i.e. synchrony) in sequential dual-brain
settings (Figure 1, bottom right panel). This approach has been
motivated by the pioneering fMRI studies that investigated
neural intersubject correlation (Hasson et al., 2004), which is a
measure of neural synchrony while perceiving identical ongoing
stimuli, such as video vignettes, without any communication
nor interaction among viewers. Another sequential strategy
that does include interaction involves the imaging of one
brain transmitting a message (i.e. information) during a prior
scanning session, and then exposing the other partner to that
message in a subsequent imaging session (Schippers et al., 2010).
One advantage of this interactive yet sequential approach is
that causality can be estimated within the dyad, under quite
controlled settings, thereby increasing signal to noise ratio.
Although the noninteractive sequential approach does not
involve communication, and therefore is far from emulating
real-life social interaction, we proposed an interesting strategy
because this sequential measure does yield shared information
processing, the information to be processed can be a vignette
of dyadic synchronous interaction (Levy et al., 2017). Prior
neuroimaging studies demonstrated overlapping neural circuits
underpinning the perception and experience of social functions
(Singer et al., 2004; Mukamel et al., 2010). Further, examining
independent lines of recent research may be taken as indication
that the perception of social interaction relies on similar
neural substrates compared to social interaction substrates;
it is surprising that both studies that tested perception of
interaction (Levy, Goldstein, Zagoory-Sharon, et al., 2016b; Isik
et al., 2017; Pratt et al., 2018; Walbrin et al., 2018; Arioli and
Canessa, 2019), and interaction per se (Kinreich et al., 2017;
Sliwa and Freiwald, 2017) highlighted the selective function
of the STS in underlying these processes. Hence, as real-time
hyperscanning of interacting individuals under ecologically
valid conditions is currently methodologically challenging (Hari
et al., 2015), this new strategy of well-controlled experimental
perception of real-life social interaction may afford an indirect,
yet useful vantage point on brain-to-brain coordination using
MEG.

Another aspect that MEG can potentially unveil is the rich
dynamic information flow between brains in interaction. MEG
confers the ability to separate simultaneous active brain regions
and the activity dynamics taking place in there. Furthermore,

this information can actually be transformed to representations
in the frequency domain, thereby illustrating neural generators
of multiple rhythms and oscillations—an aspect of brain activity
that has been thus far neglected social neuroscience (Stanley
and Adolphs, 2013). Neural oscillations are a pervasive feature of
neuronal activity in the cerebral cortex, and gamma-band oscil-
lations have been suggested to underlie neural communication
(Fries, 2005) and therefore might be important to explore dur-
ing social interactions. Unfortunately, except MEG, noninvasive
methods cannot reliably record gamma-band activity because
of signal distortion and the high involvement of this rhythm
in underlying movements. This advantage of MEG in recording
gamma-band activity is therefore very advantageous for study-
ing social interactions, and accumulating evidence points to the
involvement of the gamma rhythm in the perception of social
interaction (Levy et al., 2017; Pratt et al., 2018) as well as in social
interaction (Kinreich et al., 2017; Mu et al., 2017). For instance,
in our recent studies on dyadic social interaction, we found
that behavioral synchrony generated interbrain synchrony in the
gamma-band, and this synchrony appeared to be generated by
the temporal cortex (STS). The validity of this result pattern was
strengthened as it was observed both during online interaction
(Kinreich et al., 2017) as well as under controlled settings of
sequential scans (Levy et al., 2017). Finally, recent concepts relate
oscillations at different frequencies to the routing of information
flow in the brain and the signaling of predictions and prediction
errors (Bastos et al., 2012; Ploner et al., 2016). As social interaction
involves rapid and complex mental representations requiring
constant predictions and updating prior expectations, studying
interactive neural synchrony should be informed by oscillatory
information in our brains. In our recent MEG studies we showed
that such multirhythmic representations might indeed convey
predictions and updates during empathic (Levy et al., 2018) and
attachment (Pratt et al., 2018) processes. In the next section,
we showcase and elaborate over innovations in MEG that can
further advance insight into interpersonal neural synchrony.

Innovations in MEG analysis (canonical
correlation analysis) and hardware
(optically pumped magnetometers)
The approach of synchrony perception while being monitored
in MEG can benefit from the implementation of advanced mul-
tivariate analysis pipelines, for instance, canonical correlation
analysis (CCA). CCA is a method for finding linear relationships
between two multidimensional data sets (Hotelling, 1936). The
method finds signal components from the data that are maxi-
mally correlated between the datasets. Thus, CCA (or multi-set
canonical correlation analysis, that is, MCCA, when extending to
group contexts) naturally provides a feasible approach to study
the similarity to the brain activity between subjects [for a review,
see (Nicolle M Correa, Adali, et al., 2010a)]. Given that social
interaction and cooperation has suggested to synchronize brains
during social interaction and cooperation [(Stephens et al., 2010;
Smirnov et al., 2019); for reviews, see (Hasson et al., 2012; Liu
et al., 2018; Nummenmaa et al., 2018)], CCA may help address the
question of how people infer each other’s intentions and develop
mutual understanding during social interaction.

CCA has been previously applied in neuroimaging [(Stout
et al., 2018); for reviews, see (Nicolle M Correa, Adalı, et al.,
2010a); Wang et al., 2018] in experiments with simplified stimuli
[e.g. (Hardoon et al., 2007; Li et al., 2009; Rustandi et al., 2009;
Nicolle M Correa, Adalı, et al., 2010a; Nicolle M. Correa et al.,
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2010b; Varoquaux et al., 2010; Zhang et al., 2017)], but also using
more real-life stimuli, for example, observing other people in a
movie [(Lankinen et al., 2014; Bilenko and Gallant, 2016; Lankinen
et al., 2016)], experiencing multimodal naturalistic stimulation
(Ylipaavalniemi et al., 2009; Campi et al., 2013), listening to narra-
tives (Koskinen et al., 2013; Koskinen and Seppä, 2014), using car
driving simulator (Li et al., 2012) or interacting with each other
during MEG-hyperscanning (Remes et al., 2013); Remes et al.,
2015]. CCA provides a data-driven multivariate way to study
mutual information between subjects’ brain responses, and thus
works well, besides traditional experimental setups, also for
more complex or naturalistic paradigms, such as social interac-
tion, where building a priori model of the stimulus or interac-
tion is difficult. CCA allows inspecting the correlation between
subjects’ brain responses both in time and space: extracting
the time series of the resulting signal components allows look-
ing more closely at the temporal characteristics of synchrony,
and the weights assigned to different voxels/sensors reveal the
areas that contribute to the high correlations. As a multivariate
method, CCA operates on the level of the whole brain in contrast
to univariate methods that operate on voxel-by-voxel or sensor-
by-sensor (Habeck, 2010; McIntosh & Mišić, 2013). Thus, CCA
also considers spatial dependencies between brain areas that are
ignored in univariate methods. This is a benefit, especially when
analyzing brain activity measured during complex processes
such as social interaction that can be expected to elicit activity
on distributed set of brain areas. Multivariate methods also are
typically less sensitive to noise and, therefore, more sensitive at
a given specificity than the univariate methods (Zhuang et al.,
2019).

Furthermore, CCA/MCCA aligns the data from all subjects
into a common space and, therefore, does not require between-
subject correspondence of the sensor locations or brain areas.
This is a major advantage compared to approaches where
between-subject correlations are calculated directly between
corresponding imaging elements or sensors [comparison for
MEG in (Lankinen et al., 2018)]. In the latter case, individual
differences in the brain structure and function as well as
between-subject variability of the head position relative to
the measurement sensors typically decrease correlations.
Another advantage of CCA/MCCA in the calculation of between-
subject correlations of MEG/EEG data is that CCA/MCCA can be
calculated at the sensor level, without the need to transform the
data into the high dimensional source space. Thus, CCA/MCCA
decreases the computational resources and makes the workflow
simpler, as minimal preprocessing is needed. There are a number
of CCA variants or extensions that can be selected with emphasis
on different assumptions on the data or the paradigm [for
reviews, see e.g. (Hardoon et al., 2004; Klami et al., 2013)]. With
regard to social interaction, where the relationships of brain
activities of the subjects might not be fully linear, a nonlinear
version of CCA (Campi et al., 2013) that measures the correlation
of energies and allows for a variable delay between the time
series to accommodate [see also emiCCA (Dong et al., 2015),
kernel CCA and temporal kernel CCA; (Bießmann et al., 2010)],
for example, leader–follower changes, could be an appropriate
choice. There exists a variety of advanced Bayesian CCA methods
with different kind of priors or assumptions of the data that
might be more effective than simpler models [Virtanen et al.,
2012; Klami et al., 2014); for a review, see (Klami et al., 2013)].
Some of them have been demonstrated to be promising in the
analysis of two-person interaction in a MEG–MEG hyperscanning
experiment (Remes et al., 2013). Extensions of CCA by sparsity
constraints [sparse CCA; (Witten and Tibshirani, 2009)] and deep

learning (deep CCA; Andrew et al., 2013), provide yet another
possibilities for exploration of the most optimal method. In
addition, there are methods that are very close to CCA/MCCA
or the concept of them, such as correlated component analysis
(Dmochowski et al., 2012) or canonical source power correlation
analysis (Dähne et al., 2014). In summary, CCA has shown
to be an effective tool in the analysis of similarity between
multidimensional neuroimaging datasets, and promising
results have been demonstrated with naturalistic and social
interaction paradigms. Several extensions of CCA, allowing
inspections of, for example, nonlinear relationships between the
datasets, provide interesting possibilities to further investigate
intersubject coupling of brain activity during social interaction
as more hyperscanning studies can be expected to become
available due to the development of neuroimaging techniques
and the trend toward open sharing of imaging data.

Finally, beyond improvements in analysis pipelines, progress
in neuroimaging infrastructures and technologies could also
tap into the field of social interaction. A recent and promising
technological development might enable to gradually waiver
the need for indirectly measuring interactional synchrony (i.e.
via synchrony perception) and ultimately achieve a very high
trade-off between specificity and ecological validity. Optically
pumped magnetometers (OPMs) are a state-of-the-art magne-
toencephalography system that can be worn like a helmet, allow-
ing free and natural movement (e.g. head nodding, stretch-
ing, drinking and playing a ball game) during scanning (Boto
et al., 2018). This emerging technology is rapidly developing,
with recent data-driven modeling (Duque-Muñoz et al., 2019)
and improved detection of the movement-sensitive gamma-
band activity (Iivanainen et al., 2019), thus advancing forwards
as a viable, mobile alternative to traditional and static MEG neu-
roimaging. This new neuroimaging venue is very promising for
the study of interactional synchrony and is most probably holds
the highest potential for obtaining high neuronal specificity
during real-life settings. Of course any new technology requires
further refinement to be fully and optimally exploited, and in
the coming years, social scientists should test and experiment
with this new neuroimaging tool, in dyadic, as well as group
social settings. As this development continues to advance, it
would open new possibilities for scanning social interactions
with spatial and temporal acuity thus far impossible to obtain.

Summary
There is a growing trend among neuroscientists to adapt realistic
experimental settings, so-called ‘in the wild’, in their research.
Integrating the integration of behavioral and neural synchrony
(i.e. biobehavioral synchrony) into this trend and using robust
methodology to study the complex and diverse aspects of social
life is timely and promising for generating exciting new appli-
cations. We present here several methodological innovations
that have the potential to advance the field of interactive neural
synchrony. We begin by delineating the brief, but rapid progress
in the neuroscientific study of social interaction within less than
a decade we have witnessed a shift from applying static artificial
stimulation of interaction, to real-life interaction in the wild. We
elaborated on the importance of integrating interactive neural
synchrony with various measures of nonverbal behavior, in order
to capture and explain complex societal phenomena. We also
discussed the major methodological challenge that this field is
facing: the trade-off between ecological validity and experimen-
tal rigor. We then highlight the use of MEG neuroimaging as a
promising approach for mitigating this trade-off and increasing
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the richness and quality of neural data collected during real-
life social interactions. We end with presenting methodological
innovations that have the potential to further advance this field:
data-driven multivariate analysis (CCA) and mobile MEG (OPM).
These are exciting times for conducting research into the intrin-
sic mechanisms that drive social life and for the application of
novel computational methods, new experimental contexts and
new real-life experimental paradigms.
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